打开APP

Controlling the Cell Cycle: Cdk Substrates - David O. Morgan

本视频由科普中国和生物医学大讲堂出品

David O. Morgan (UCSF) Part 2: Controlling the Cell Cycle: Cdk Substrates

Cyclin-dependent kinases (Cdks) are the central components of the control system that initiates the events of the cell cycle. In the second part of this lecture, I discuss my laboratory's efforts to address the problem of how the Cdks trigger cell-cycle events. I describe our methods for identifying the protein substrates of the Cdks, and I discuss how these studies have led to important clues about how Cdks find their correct targets in the cell and how phosphorylation of those targets governs their function.

2016-01-08 课时:31分钟

Controlling the Cell Cycle: Anaphase Onset - David O. Morgan

本视频由科普中国和生物医学大讲堂出品

David O. Morgan (UCSF) Part 3: Controlling the Cell Cycle: Anaphase Onset

In the anaphase stage of the cell cycle, the duplicated chromosomes are pulled apart by a machine called the mitotic spindle, resulting in the distribution of a complete set of chromosomes to each of the daughter cells. In the third part of this lecture, I describe the combination of biochemistry and microscopy in my laboratory that led to the discovery of a regulatory switch that triggers the abrupt and synchronous separation of the chromosomes at the onset of anaphase.

2016-01-08 课时:22分钟

Protein synthesis: a high fidelity molecular event

Rachel Green (Johns Hopkins U., HHMI) 1: Protein synthesis: a high fidelity molecular event

Talk Overview:
In her first talk, Green provides a detailed look at protein synthesis, or translation. Translation is the process by which nucleotides, the “language” of DNA and RNA, are translated into amino acids, the “language” of proteins. Green begins by describing the components needed for translation; mRNA, tRNA, ribosomes, and the initiation, elongation, and termination factors. She then explains the roles of these players in ensuring accuracy during the initiation, elongation, termination and recycling steps of the translation process. By comparing translation in bacteria and eukaryotes, Green explains that it is possible to determine which components and steps are highly conserved and predate the divergence of different kingdoms on the tree of life, and which are more recent adaptations.
Green’s second talk focuses on work from her lab investigating how ribosomes detect defective mRNAs and trigger events leading to the degradation of the bad RNA and the incompletely translated protein product and to the recycling of the ribosome components. Working in yeast and using a number of biochemical and genetic techniques, Green’s lab showed that the protein Dom34 is critical for facilitating ribosome release from the short mRNAs that result from mRNA cleavage. Experiments showed that Dom34-mediated rescue of ribosomes from short mRNAs is an essential process for cell survival in higher eukaryotes.

Speaker Biography:
Rachel Green received her BS in chemistry from the University of Michigan. She then moved to Harvard to pursue her PhD in the lab of Jack Szostak where she worked on designing catalytic RNA molecules and investigating their implications for the evolution of life. As a post-doctoral fellow at the University of California, Santa Cruz, Green began to study how the ribosome translates mRNA to protein with such accuracy.

Currently, Green is a Professor of Molecular Biology and Genetics at the Johns Hopkins School of Medicine and an Investigator of the Howard Hughes Medical Institute. Research in her lab continues to focus on the ribosome and factors involved in the fidelity of eukaryotic and prokaryotic translation.

Green is the recipient of a Johns Hopkins University School of Medicine Graduate Teaching Award as well as the recipient for numerous awards for her research. She was elected to the National Academy of Sciences in 2012.

2016-04-28 课时:44分钟

Perkinelmer:从表型到靶点的药物研发流程

传统基于靶点(target-based)的药物研发流程耗费大量的时间(历时10年以上)和财力(数十亿美元),这种流程的成功率相当低,只在极少数的研发案例中出现能通过整个流程最终上市成为治疗疾病的药物,究其原因是从体外到体内的过程违背了药物发挥作用的基本原则,即只有在生理环境下有效果才算真正的效果。

近年来越来越多的药物研发转变为始于表型研究,继而转入靶点研究的新流程。这个流程的核心在于先确定候选药物能否引起细胞生理形态的改变,进而确认作用靶点,辅以正交实验的方法,通过大数据分析得到坚实可靠的结果。 在这次研讨会中,我们的专家将会在以下方面与您探讨:

(1).非标记检测在不用类型细胞表型研究中的应用
(2).细胞成像在表型研究中的应用
(3).靶点研究的最新实验方法
(4).通过正交方法获得坚实可靠的实验结果

2016-05-31 课时:64分钟

Perkinelmer Company Overview

At Perkinelmer we're taking action to improve the health and safety of people and the environment. We're committed to transforming risk into safety, mystery into knowledge and ideas into action for healthier today and even better tomorrow. We are committed to delivering solutions that improve our customers' outcomes, advance human and environmental health technologies and, deliver shareholder value. Every day, we work together to ensure the way we do business is as meaningful as the solutions we provide.

2016-06-02 课时:2分钟

Introducing the EnSight™ Multimode Plate Reader from Perkinelmer

Perkinelmer's EnSight Multimode Plate Reader is the first benchtop system to offer well-imaging alongside label-free and labeled detection technologies - for a whole new perspective on your research. For more information, please visit the EnSight website - http://bit.ly/T4IDPh

2016-06-02 课时:4分钟

Pre-Clinical In Vivo Imaging Solutions from Perkinelmer

Perkinelmer offers a comprehensive portfolio of pre-clinical in vivo imaging systems and reagents. Find out more at http://bit.ly/1mnyvwF. Our pre-clinical imaging instruments include our highly published (over 4000 citations) IVIS Optical imaging systems, Quantum FX microCT which delivers high quality images at an x-ray dose low enough for longitudinal studies, and x-ray systems. We also offer a large portfolio of in vivo imaging reagents for most areas of research including cancer, infectious disease, stem cell, inflammation, toxicology/drug safety and more.

2016-06-02 课时:4分钟

Together we can help Revolutionizing Medicine

Together we can help Revolutionizing Medicine

2016-06-02 课时:3分钟

PureBlu™ Hoechst 33342 Nuclear Staining Dye for Live Cells - A Fast Approach to Staining Nuclei

This brief tutorial demonstrates the use of the PureBlu Hoechst 33342 Dye with the ZOE™ Fluorescent Cell Imager for routine nuclear staining in fluorescence microscopy and cell imaging applications.

2016-06-15 课时:3分钟

Molecular Chaperones in the Eukayotic Cell

为什么组织特异性?为什么这些有毒蛋白质?为什么不协在神经元的反应?为什么伴侣不是百分之.......霍华德休斯医学研究所Art Horwich在真核细胞中的伴侣蛋白分子的讲座中将一一为您解答。

2016-07-26 课时:21分钟