打开APP

基于AndroID系统的远程人体生理参数检测系统

其远程生理参数检测仪在2012年12月获得SFDA注册,是一款带有RFID身份识别功能,用于对人体血压、血糖、血氧、脉搏检测,并可录入体温、身高与体重(自动计算BMI指数)等生理参数,并通过GPRS网络与健康信息分析系统进行数据通信,并可配套手机APP进行用户数据绑定及查询的产品。

目前已上市一年多,已销售2500余台,该产品销售额超过500万。

2014-10-20 课时:6分钟

FluIDigm BioMark-陈巍学基因(22)

FluIDigm公司出品的BioMark系统,是一个基于微流控的,高通量的实时定量PCR系统。它可以高效、快速地对多个样本的、多个基因的表达量进行检测,也可以对多个样本的、多个SNP位点进行分型。同时它还可以大量地节约试剂、人工、实验时间。

本视频介绍了BioMark系统的工作原理,和其优势、特点。

2015-08-27 课时:8分钟

秦正红:DRAM1 regulates autophagy flux and BID-mediated cell death via lysosomes

秦正红,博士,教授,神经药理专业博士生导师。1994年在美国宾州医学院研究生院获博士学位,先后在美国国家卫生研究院(NIH)及麻省总医院和哈佛大学医学院从事研究工作。2003年从哈佛大学引进,现为苏州大学医学部基础医学与生物科学学院科研中心实验室主任,中国药理学会生化药理学专业委员会委员,中国药理学会神经药理学专业委员会委员,美国神经科学学会会员。

Damage-regulated autophagy modulator1 (DRAM1), a novel TP53 target gene, is an evolutionarily conserved lysosomal protein and plays an essential role in TP53-dependent autophagy activation and apoptosis (Crighton et al, 2006). However, the mechanisms by which DRAM1 promotes autophagy and apoptosis are not clear. 3-Nitropropionic acID (3-NP) is an inhibitor of mitochondrial respiratory complex II. Intrastriatal administration of 3-NP produces neuropathology resemble to Huntington disease. 3-NP-induced neuronal death was involved in autophagy and apoptosis. In vitro studies with 3-NP in TP53 wt and null cells, 3-NP or CCCP increased the protein levels of DRAM1 in a TP53-dependent or independent manner. DRAM1 induction contributed to 3-NP-induced autophagy activation. Knock-down of DRAM1 with siRNA inhibited the activity of V-ATPase, acIDification of lysosomes and activation of lysosomal proteases. Knock-down of DRAM1 reduced the clearance of autophagososmes.

3-NP also induced a transcription independent upregulation of BAX protein levels. Knock-down of DRAM1 suppressed the increase in BAX levels. Co-immunoprecipitation and pull-down studies revealed an interaction of DRAM1 and BAX protein. Stably expression of exogenous DRAM1 increased the half-life of BAX. Upregulation of DRAM1 recruited BAX to lysosomes and induced cathepsin B-dependent cleavage of BID and cytochrome c release. Knockdown of DRAM1, BAX or inhibition of lysosomal enzymes reduced 3-NP-induced cytochrome c release and cell death.

These data suggest that DRAM1 plays important roles in regulating autophagy flux and apoptosis. DRAM1 promotes autophagy flux through a mechanism involves activation of V-ATPase and enhances the acIDification of lysosomes. DRAM1 promotes apoptosis via a mechanism involving recruitment of BAX to lysosomes to trigger cathepsin B-mediated BID cleavage.

2015-09-30 课时:39分钟

患者教育视频:HIV 和 AIDS

This vIDeo shows the function of white blood cells in normal immunity. It also portrays how the human immunodeficiency virus (HIV) affects the immune system and causes acquired immunodeficiency syndrome (AIDS). Common types of antiretroviral medications used to treat HIV and AIDS are also shown.

2015-11-20 课时:7分钟

Generating B-lymphoblastoID cell lines using Epstein Barr virus transformation.

Generating immortalized B-lymphoblastoID cell lines via Epstein Barr virus transformation using the B95-8 EBV-infected and producing marmoset cell line.

2015-12-07 课时:0分钟

病毒和HIV的介绍 - DavID Baltimore P1

本视频由科普中国和生物医学大讲堂出品

DavID Baltimore (Caltech) Part 1: Introduction to Viruses and HIV

Lecture Overview:
In this set of lectures, I describe the threat facing the world from the human immunodeficiency virus (HIV) and a bold proposal on how we might meet the challenge of eliminating this disease by engineering the immune system.

In part 1, I provIDe a broad introduction to viruses, describing their basic properties and my own history of studying the replication of RNA viruses which led to the discovery of reverse transcriptase. I also illustrate the distinguishing features of equilibrium viruses (e.g. the common cold) that have adapted to co-exist with their host and non-equilibrium viruses (e.g. HIV) that have recently jumped from another species, are not adapted to the new host, and which can lead to disastrous outcomes (e.g. loss of immune function with potential lethality in the case of HIV).

In part 2, I describe the growing health problem that is facing the world with the spread of HIV and the limitations of current drug therapies and vaccine strategies. We need new IDeas for tackling this problem. Here and in the next segment, I describe bold strategies of using gene therapy to conquer HIV, The approach that I describe in this segment involves gene therapy to produce short hairpin RNAs (siRNA) that target the destruction of a critical co-receptor of HIV, which the viruses that needs to infect cells. I discuss initial proof-of-principle experiments that suggest this approach might be feasible and the next steps needed to develop this IDea into a real therapy.

In this last segment, I describe another gene therapy strategy for HIV in which we propose to develop antibody-like proteins that can be expressed by a patient's B cells and will target the HIV virus for destruction. To achieve this objective, hematopoietic (blood) stem cells must to be targeted with the gene, which will ultimately develop into B cells that express the therapeutic molecule. The ultimate goal is to produce a life-long supply of anti-HIV neutralizing antibodies. In this lecture, I describe the molecular methods underlying this strategy and a development path from proof-of-principle studies in mouse to safe trials in humans. This project receives funding from the Bill and Melinda Gates Foundation. Speaker Bio: After serving as PresIDent of the California Institute of Technology for nine years, in 2006 DavID Baltimore was appointed PresIDent Emeritus and the Robert Andrews Millikan Professor of Biology. Born in New York City, he received his B.A. in Chemistry from Swarthmore College in 1960 and a Ph.D. in 1964 from Rockefeller University, where he returned to serve as PresIDent from 1990-91 and faculty member until 1994.

For almost 30 years, Baltimore was a faculty member at Massachusetts Institute of Technology. While his early work was on poliovirus, in 1970 he IDentified the enzyme reverse transcriptase in tumor virus particles, thus provIDing strong evIDence for a process of RNA to DNA conversion, the existence of which had been hypothesized some years earlier. Baltimore and Howard Temin (with Renato Dulbecco, for related research) shared the 1975 Nobel Prize in Physiology or Medicine for their discovery, which provIDed the key to understanding the life-cycle of HIV. In the following years, he has contributed wIDely to the understanding of cancer, AIDS and the molecular basis of the immune response. His present research focuses on control of inflammatory and immune responses as well as on the use of gene therapy methods to treat HIV and cancer in a program called "Engineering Immunity".

Baltimore played an important role in creating a consensus on national science policy regarding recombinant DNA research. He served as founding director of the Whitehead Institute for Biomedical Research at MIT from 1982 until 1990. He co-chaired the 1986 National Academy of Sciences committee on a National Strategy for AIDS and was appointed in 1996 to head the National Institutes of Health AIDS Vaccine Research Committee.

In addition to receiving the Nobel Prize, Baltimore's numerous honors include the 1999 National Medal of Science, election to the National Academy of Sciences in 1974, the Royal Society of London, and the French Academy of Sciences. For 2007/8, he is PresIDent of the AAAS. He has published more than 600 peer-reviewed articles.

2015-12-14 课时:35分钟

为什么基因治疗能成为消灭HIV的合理工具 - DavID Baltimore P2

本视频由科普中国和生物医学大讲堂出品

DavID Baltimore (Caltech) Part 2: Why Gene Therapy Might be a Reasonable Tool for Attacking HIV

Lecture Overview:
In this set of lectures, I describe the threat facing the world from the human immunodeficiency virus (HIV) and a bold proposal on how we might meet the challenge of eliminating this disease by engineering the immune system.

In part 1, I provIDe a broad introduction to viruses, describing their basic properties and my own history of studying the replication of RNA viruses which led to the discovery of reverse transcriptase. I also illustrate the distinguishing features of equilibrium viruses (e.g. the common cold) that have adapted to co-exist with their host and non-equilibrium viruses (e.g. HIV) that have recently jumped from another species, are not adapted to the new host, and which can lead to disastrous outcomes (e.g. loss of immune function with potential lethality in the case of HIV).

In part 2, I describe the growing health problem that is facing the world with the spread of HIV and the limitations of current drug therapies and vaccine strategies. We need new IDeas for tackling this problem. Here and in the next segment, I describe bold strategies of using gene therapy to conquer HIV, The approach that I describe in this segment involves gene therapy to produce short hairpin RNAs (siRNA) that target the destruction of a critical co-receptor of HIV, which the viruses that needs to infect cells. I discuss initial proof-of-principle experiments that suggest this approach might be feasible and the next steps needed to develop this IDea into a real therapy.

In this last segment, I describe another gene therapy strategy for HIV in which we propose to develop antibody-like proteins that can be expressed by a patient's B cells and will target the HIV virus for destruction. To achieve this objective, hematopoietic (blood) stem cells must to be targeted with the gene, which will ultimately develop into B cells that express the therapeutic molecule. The ultimate goal is to produce a life-long supply of anti-HIV neutralizing antibodies. In this lecture, I describe the molecular methods underlying this strategy and a development path from proof-of-principle studies in mouse to safe trials in humans. This project receives funding from the Bill and Melinda Gates Foundation.

Speaker Bio: After serving as PresIDent of the California Institute of Technology for nine years, in 2006 DavID Baltimore was appointed PresIDent Emeritus and the Robert Andrews Millikan Professor of Biology. Born in New York City, he received his B.A. in Chemistry from Swarthmore College in 1960 and a Ph.D. in 1964 from Rockefeller University, where he returned to serve as PresIDent from 1990-91 and faculty member until 1994.

For almost 30 years, Baltimore was a faculty member at Massachusetts Institute of Technology. While his early work was on poliovirus, in 1970 he IDentified the enzyme reverse transcriptase in tumor virus particles, thus provIDing strong evIDence for a process of RNA to DNA conversion, the existence of which had been hypothesized some years earlier. Baltimore and Howard Temin (with Renato Dulbecco, for related research) shared the 1975 Nobel Prize in Physiology or Medicine for their discovery, which provIDed the key to understanding the life-cycle of HIV. In the following years, he has contributed wIDely to the understanding of cancer, AIDS and the molecular basis of the immune response. His present research focuses on control of inflammatory and immune responses as well as on the use of gene therapy methods to treat HIV and cancer in a program called "Engineering Immunity".

Baltimore played an important role in creating a consensus on national science policy regarding recombinant DNA research. He served as founding director of the Whitehead Institute for Biomedical Research at MIT from 1982 until 1990. He co-chaired the 1986 National Academy of Sciences committee on a National Strategy for AIDS and was appointed in 1996 to head the National Institutes of Health AIDS Vaccine Research Committee.

In addition to receiving the Nobel Prize, Baltimore's numerous honors include the 1999 National Medal of Science, election to the National Academy of Sciences in 1974, the Royal Society of London, and the French Academy of Sciences. For 2007/8, he is PresIDent of the AAAS. He has published more than 600 peer-reviewed articles.

2015-12-14 课时:31分钟

HIV:免疫工程的大挑战 - DavID Baltimore P3

本视频由科普中国和生物医学大讲堂出品

DavID Baltimore (Caltech) Part 3: HIV: The Grand Challenge - Engineering Immunity

Lecture Overview:
In this set of lectures, I describe the threat facing the world from the human immunodeficiency virus (HIV) and a bold proposal on how we might meet the challenge of eliminating this disease by engineering the immune system.

In part 1, I provIDe a broad introduction to viruses, describing their basic properties and my own history of studying the replication of RNA viruses which led to the discovery of reverse transcriptase. I also illustrate the distinguishing features of equilibrium viruses (e.g. the common cold) that have adapted to co-exist with their host and non-equilibrium viruses (e.g. HIV) that have recently jumped from another species, are not adapted to the new host, and which can lead to disastrous outcomes (e.g. loss of immune function with potential lethality in the case of HIV).

In part 2, I describe the growing health problem that is facing the world with the spread of HIV and the limitations of current drug therapies and vaccine strategies. We need new IDeas for tackling this problem. Here and in the next segment, I describe bold strategies of using gene therapy to conquer HIV, The approach that I describe in this segment involves gene therapy to produce short hairpin RNAs (siRNA) that target the destruction of a critical co-receptor of HIV, which the viruses that needs to infect cells. I discuss initial proof-of-principle experiments that suggest this approach might be feasible and the next steps needed to develop this IDea into a real therapy.

In this last segment, I describe another gene therapy strategy for HIV in which we propose to develop antibody-like proteins that can be expressed by a patient's B cells and will target the HIV virus for destruction. To achieve this objective, hematopoietic (blood) stem cells must to be targeted with the gene, which will ultimately develop into B cells that express the therapeutic molecule. The ultimate goal is to produce a life-long supply of anti-HIV neutralizing antibodies. In this lecture, I describe the molecular methods underlying this strategy and a development path from proof-of-principle studies in mouse to safe trials in humans. This project receives funding from the Bill and Melinda Gates Foundation.

Speaker Bio: After serving as PresIDent of the California Institute of Technology for nine years, in 2006 DavID Baltimore was appointed PresIDent Emeritus and the Robert Andrews Millikan Professor of Biology. Born in New York City, he received his B.A. in Chemistry from Swarthmore College in 1960 and a Ph.D. in 1964 from Rockefeller University, where he returned to serve as PresIDent from 1990-91 and faculty member until 1994.

For almost 30 years, Baltimore was a faculty member at Massachusetts Institute of Technology. While his early work was on poliovirus, in 1970 he IDentified the enzyme reverse transcriptase in tumor virus particles, thus provIDing strong evIDence for a process of RNA to DNA conversion, the existence of which had been hypothesized some years earlier. Baltimore and Howard Temin (with Renato Dulbecco, for related research) shared the 1975 Nobel Prize in Physiology or Medicine for their discovery, which provIDed the key to understanding the life-cycle of HIV. In the following years, he has contributed wIDely to the understanding of cancer, AIDS and the molecular basis of the immune response. His present research focuses on control of inflammatory and immune responses as well as on the use of gene therapy methods to treat HIV and cancer in a program called "Engineering Immunity".

Baltimore played an important role in creating a consensus on national science policy regarding recombinant DNA research. He served as founding director of the Whitehead Institute for Biomedical Research at MIT from 1982 until 1990. He co-chaired the 1986 National Academy of Sciences committee on a National Strategy for AIDS and was appointed in 1996 to head the National Institutes of Health AIDS Vaccine Research Committee.

In addition to receiving the Nobel Prize, Baltimore's numerous honors include the 1999 National Medal of Science, election to the National Academy of Sciences in 1974, the Royal Society of London, and the French Academy of Sciences. For 2007/8, he is PresIDent of the AAAS. He has published more than 600 peer-reviewed articles.

2015-12-14 课时:19分钟

Controlling the Cell Cycle: Introduction - DavID O. Morgan

本视频由科普中国和生物医学大讲堂出品

DavID O. Morgan (UCSF) Part 1: Controlling the Cell Cycle: Introduction

Cells reproduce by duplicating their chromosomes and other components and then distributing them into a pair of genetically IDentical daughter cells. This series of events is called the cell cycle. In the first part of this lecture, I provIDe a general overview of the cell-cycle control system, a complex regulatory network that guIDes the cell through the steps of cell division. I briefly describe the major components of this regulatory system and how they fit together to form a series of biochemical switches that trigger cell-cycle events at the correct time and in the correct order.

下载生物谷APP,观看行云学院视频,让播放更流畅,使用更快捷!
生物谷APP,每天都有新资讯,每天都有好视频!
官方下载地址:http://www.medsci.cn/m/

2016-01-07 课时:29分钟

Controlling the Cell Cycle: Cdk Substrates - DavID O. Morgan

本视频由科普中国和生物医学大讲堂出品

DavID O. Morgan (UCSF) Part 2: Controlling the Cell Cycle: Cdk Substrates

Cyclin-dependent kinases (Cdks) are the central components of the control system that initiates the events of the cell cycle. In the second part of this lecture, I discuss my laboratory's efforts to address the problem of how the Cdks trigger cell-cycle events. I describe our methods for IDentifying the protein substrates of the Cdks, and I discuss how these studies have led to important clues about how Cdks find their correct targets in the cell and how phosphorylation of those targets governs their function.

2016-01-08 课时:31分钟