首页 » 标签:“果蝇”(共找到约100条相关新闻)
  • Science:新突破!在单细胞转录组分辨率下重建虚拟果蝇胚胎

    图片来自Drosophila Virtual Expression eXplorer/BIMSB at the MDC。2017年9月10日/生物谷BIOON/---在经过13次快速的细胞分裂之后,一个受精的果蝇卵子产生大约6000个细胞。它们在显微镜下看起来都一样。然而,在那时,果蝇胚胎中的每个细胞已知道它是变成神经元还是肌肉细胞,或2017年9月10日/生物谷BIOON/---者变成肠道、头部

  • Nat Neurosci:科学家们发现果蝇飞行导航的神经学机制

    2017年9月5日/生物谷BIOON/---最近,来自日本RIKEN脑科学研究所的科学家们发现了果蝇大脑中两种独立的,在飞行过程中形式导航功能的通路,相关结果发表在《Nature Neuroscience》杂志上。这项研究结合飞行刺激器以及激活神经元成像的手段,发现了果蝇大脑中与运动相关的两个区域。对于大部分动物来说,成功的导航对于寻找食物,躲避天敌以及交配都是必须的,它通常需要参考很多种不同类型

  • Cell:科学家绘制果蝇全脑神经图谱

      神经系统科学的一个主要任务就是了解大脑神经元与特定行为间的联系。在一项新的研究中,研究人员使用计算机视觉和机器学习技术,构建出一个大型的全脑神经图谱数据库。这些全脑神经图谱揭示了激活成年果蝇中的一部分神经元的行为影响。相关论文近日发表于《细胞》杂志。“该研究的终极目标是将神经元回路与特定的行为关联在一起。当前的神经科学技术,如电生理学成像或钙离子成像,仅允许一次对少数神经元

  • Cell:首次绘制出果蝇全脑神经图谱

    图片来自Kristin Branson/Janelia Research Campus。2017年7月16日/生物谷BIOON/---相比于人大脑中的几十亿个神经元,黑腹果蝇(Drosophila melanogaster)的大脑含有大约25万个神经元。然而,利用当前可获得的工具鉴定出产生简单和复杂的行为(如行走、跳步和求偶)的神经元回路在果蝇中是比较困难的。在一项新的研究中,为了使得对行为的神经

  • Nature:重大突破!在果蝇大脑中发现一种新的视紫红质

    2017年5月13日/生物谷BIOON/---六种被称作视紫红质(rhodopsins)的生物色素在果蝇眼睛的光线感知中发挥着已被广泛接受的作用。它们中的三种也在温度感觉中发挥着不依赖光线的作用。如今,一项新的研究证实第七种视紫红质,即Rh7,在果蝇大脑中表达,在那里,它调节着果蝇的昼夜活动周期。相关研究结果于2017年5月10日在线发表在Nature期刊上,论文标题为“A rhodopsin i

  • Development :发现抑制果蝇髓质神经元去分化机制

    4月11日,国际学术期刊Development 发表了中国科学院上海生命科学研究院生物化学与细胞生物学研究所张雷研究组关于调控果蝇神经元分化的最新研究成果:Prevention of medulla neuron dedifferentiation by Nerfin-1

  • 【Cell】外泌体介导了果蝇的抗病毒适应性免疫

    果蝇和哺乳动物抗病毒免疫反应的比较几十年来,果蝇一直是先天免疫研究的模式动物。在最新一期的Cell杂志上,加州大学旧金山分校Tassetto教授等人描述了抗病毒RNAi扩散的机制,通过反向转录的vDNA环和包含小RNA的外

  • 果蝇身藏大密码:自闭症有救了

    东南大学一间实验室里养着数万只果蝇,这种在生活中常被人忽视,甚至惹人厌的小生物,居然藏着大密码。记者 4 月 16 日从东南大学获悉,该校教授韩俊海通过对果蝇的研究发掘出了自闭症的基因密码,最新研究成果已发

  • 利用果蝇研究遗传性肾脏疾病

     大多数与人肾病综合征(NS)相关的基因也在果蝇肾中起关键作用,这种跨物种功能使其成为理想的临床前模型以改善对人类疾病理解的物种,儿童国家卫生系统研究团队在最近的一期人类分子遗传学上报告。NS是一系列

  • 太空生活不影响果蝇“生娃”

    长期太空生活到底会不会妨碍人类生育后代或导致物种改变?为了解答这个问题,俄罗斯科研人员派出果蝇去试了试,结果发现这种昆虫在两次往返近地空间和地球期间总共繁殖了4代,其物种在形态上没有变化。俄科学院分子