打开APP

Cell重磅:揭开紫外线导致细胞死亡的作用机制

来源:生物世界 2024-06-09 09:14

在这项最新研究中,研究团队揭示了紫外线辐射会引发一种即时早期反应,主要由ZAK信号通路驱动,从而在紫外线应激后重新配置全局磷酸蛋白组。

约翰·霍普金斯大学和纪念斯隆·凯特琳癌症中心的研究人员在国际顶尖学术期刊 Cell 上发表了题为:The ribotoxic stress response drives UV-mediated cell death 的研究论文。

该研究揭示了核糖体应激反应(RSR)驱动了紫外线(UV)介导的细胞死亡,并进一步解析了其作用机制。

图片

核糖体是主要的应激感受器,激活决定细胞命运的信号通路。在非应激细胞中,翻译稳态是通过调节mRNA的起始速率来维持的。然而,核糖体偶尔会遇到由基因表达缺陷或化学损伤引起的有问题的mRNA。长时间的核糖体停滞会导致核糖体碰撞,核糖体碰撞会招募质量控制(QC)因子,这些因子会将mRNA和新生肽链作为降解目标,并挽救停滞的核糖体。然而,过度的核糖体碰撞会将碰撞的核糖体转化为信号传递平台,启动全局应激响应。

紫外线(UV)诱导DNA损伤并激活DNA损伤反应(DDR)通路,这些DNA损伤诱导DNA复制叉停滞并激活ATR激酶。ATR及其效应激酶CHEK1的信号传导有助于解决复制应激和维持基因组完整性。这些信号通路也会阻滞细胞周期,为修复留出时间。DNA损伤的严重程度和细胞的修复能力决定了它是存活还是经历p53介导的凋亡。

紫外线还通过光化学反应产生嘧啶二聚体和其他光产物诱导转录组RNA损伤。紫外线损伤导致解码缺陷,因为核糖体在含有富含嘧啶的受损密码子上停滞。其他在mRNA上引入大量加合物的化学制剂也会导致核糖体停滞,从而激活核糖体毒性应激反应(RSR),然而,DDR和RSR在决定核酸(包括DNA和RNA)损伤后细胞命运中的相对作用尚不清楚。

早期研究表明,核糖体毒性应激激活p38和JNK-MAPK,之后的研究发现ZAKα(也简称为ZAK)是响应核糖体毒性应激的上游MAP3K。紫外线诱导的翻译功能障碍也与GCN2和整合应激反应(ISR)激活有关。该团队最近的研究发现,核糖体碰撞直接激活ZAK和GCN2激酶。ZAK与延伸中的核糖体结合,在核糖体碰撞时被激活,随后激活p38和JNK,分别触发细胞周期阻滞和凋亡。核糖体碰撞也激活GCN2,通过ISR导致eIF2α磷酸化和全局蛋白合成抑制。

虽然上述这些研究揭示了核糖体碰撞会激活核糖体毒性应激反应(RSR)和整合应激反应(ISR)通路,但未能阐明细胞是如何通过整合ZAK和GCN2通路的输出来协调对碰撞的适度反应并决定细胞命运的。一个引人注目的模型是,核糖体碰撞的频率和持续时间作为一种分子节流器,调节细胞生存(通过ISR和p38介导的细胞周期停滞)与死亡(通过JNK介导的细胞凋亡)之间的平衡。一个推论是,调节机制应该抑制ZAK对偶然碰撞的过度反应,确保信号停止。

在这项最新研究中,研究团队揭示了紫外线辐射会引发一种即时早期反应,主要由ZAK信号通路驱动,从而在紫外线应激后重新配置全局磷酸蛋白组。通过比较ZAK和DDR通路关键组分的相对贡献,研究团队发现ZAK(以及RSR)是响应紫外线时早期凋亡和细胞周期停滞的主要驱动力。

具体来说,在这项研究中,研究团队使用时间分辨率磷酸蛋白组学、化学遗传学、单细胞成像和生化方法,创建了一份关于细胞响应紫外线损伤时激活的信号通路的时序图谱。

该研究发现,紫外线诱导的细胞凋亡是由核糖体毒性应激反应(RSR)激酶ZAK介导的,而不是通过DNA损伤反应(DDR)。

该研究还鉴定出其中两个负反馈模块,它们调节ZAK介导的细胞凋亡:

1)GCN2激活通过减少受损mRNA上的核糖体碰撞来限制ZAK活性;

2)ZAK活性触发其保守的磷酸水解位点的自磷酸化,导致其降解和信号终止。

图片

这些机制共同作用,使ZAK的活性与核糖体碰撞水平相适应,以建立稳定、耐受和死亡的调节机制,揭示了其作为细胞核酸损伤“哨兵”的关键作用。

版权声明 本网站所有注明“来源:生物谷”或“来源:bioon”的文字、图片和音视频资料,版权均属于生物谷网站所有。非经授权,任何媒体、网站或个人不得转载,否则将追究法律责任。取得书面授权转载时,须注明“来源:生物谷”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

87%用户都在用生物谷APP 随时阅读、评论、分享交流 请扫描二维码下载->