打开APP

小麦着丝粒研究获进展

来源:遗传发育所 2023-12-12 09:42

普通小麦是主要的粮食作物之一。普通小麦的形成涉及三个祖先种的两次远缘杂交和异源多倍化过程。小麦基因组大小约16 Gb,包含A、B和D三套既高度同源又有明显分化的亚基因组(其中,90%以上为重复序列)。

普通小麦是主要的粮食作物之一。普通小麦的形成涉及三个祖先种的两次远缘杂交和异源多倍化过程。小麦基因组大小约16 Gb,包含A、B和D三套既高度同源又有明显分化的亚基因组(其中,90%以上为重复序列)。普通小麦具有良好的可杂交性,可以与多种近缘野生种进行杂交,由此引入野生资源的优异性状,有效改良小麦的农艺性状。普通小麦着丝粒主要由卫星重复序列和反转座子组成,平均大小约8 Mb。不同倍性小麦参考基因组、大规模重测序以及多组学数据的发表,为小麦着丝粒的研究提供了重要的基因组资源。 

远缘杂交和异源多倍化是指物种通过种属间杂交和全基因组加倍,使多套染色体在同一细胞核内稳定遗传的现象,是新物种形成和生物多样性重要的驱动力之一。远缘杂交可以拓宽作物基因库的遗传多样性,改良作物关键农艺性状甚至创造新物种,具有不可替代的作用和独特优势。研究表明,作物远缘杂交和异源多倍化早期世代会经历不同程度的基因组冲击,并伴随染色体数目和结构的异常,产生染色体重排以及单亲染色体丢失等核型不稳定现象。因此,对远缘杂交过程不同亲本来源染色体组的稳定和适应机制进行研究,有助于克服种间隔离,实现种质资源更高效、更广泛的利用。 

中国科学院遗传与发育生物学研究所韩方普研究组长期从事小麦远缘杂交与染色体工程育种工作。前期,课题组利用小麦远缘杂交材料,研究四倍体长穗偃麦草的起源及快速二倍化;利用二倍体及四倍体长穗偃麦草的优良基因用于小麦赤霉病抗性遗传改良。本研究在前期成果的基础上,从头创制一系列人工合成小麦材料,探讨不同基因组着丝粒瞬时适应远缘杂交和异源多倍化的方式,解析多倍体基因组核型稳定的机制,为其他多倍体作物及潜在野生近缘种着丝粒的重新驯化奠定基础。 

该研究通过人工创制一系列四倍体和六倍体合成小麦材料来模拟自然界小麦多倍化过程,并通过着丝粒特异组蛋白CENH3抗体进行ChIP-seq试验发现,在小麦-山羊草合成材料F1、S0及有限世代连续自交过程中,着丝粒CENH3的装载相对亲本稳定(如图)。这说明面对基因组冲击人工合成异源多倍体小麦早期世代着丝粒CENH3渐进式进化方式的普遍性,为剖析异源多倍体早期基因组相对稳定提供了保证机制。 

相关研究成果以Wide hybridizations reveal the robustness of functional centromeres in Triticum-Aegilops species complex lines为题,在线发表在Journal of Genetics and Genomics上。该研究由遗传发育所和华中农业大学合作完成。研究工作得到国家重点研发计划和国家自然科学基金的支持。

 

小麦-山羊草人工合成材料着丝粒的适应性进化。A、杂交对着丝粒定位的影响;B、多色FISH技术鉴定合成小麦材料;C、杂交和多倍体化对着丝粒定位的影响;D、合成四倍体小麦代际间CENH3装载稳定;E、高代合成小麦核型稳定;F、高代合成小麦7号染色体着丝粒的适应性进化。 

版权声明 本网站所有注明“来源:生物谷”或“来源:bioon”的文字、图片和音视频资料,版权均属于生物谷网站所有。非经授权,任何媒体、网站或个人不得转载,否则将追究法律责任。取得书面授权转载时,须注明“来源:生物谷”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

87%用户都在用生物谷APP 随时阅读、评论、分享交流 请扫描二维码下载->