Nature Communications:揭示ATF4依赖的果糖代谢促进胶质瘤的恶性进展
来源:生物物理所 2022-10-19 09:43
多形性胶质母细胞瘤(Glioblastoma multiforme,GBM)是一种恶性程度极高的脑部肿瘤。在正常生理条件下,GBM利用葡萄糖作为主要能量物质来源支持肿瘤细胞的快速增殖
多形性胶质母细胞瘤(Glioblastoma multiforme,GBM)是一种恶性程度极高的脑部肿瘤。在正常生理条件下,GBM利用葡萄糖作为主要能量物质来源支持肿瘤细胞的快速增殖,此外,其他营养物质如果糖、氨基酸和脂肪酸等也可作为GBM的能量来源。流行病学研究表明,果糖的过量摄取与肿瘤恶性进展密切相关。哺乳动物细胞中,果糖代谢通路与葡萄糖代谢通路的起始阶段不同,GLUT5(由SLC2A5基因编码)负责把果糖转运进入细胞,在细胞中果糖被ketohexokinase磷酸化转化成1-磷酸果糖,随后aldolase B将一分子1-磷酸果糖裂解为一分子甘油醛和一分子磷酸二羟丙酮,两者分别通过被triokinase磷酸化和异构化转化为3-磷酸甘油醛,进入糖酵解代谢途径。
在哺乳动物中,整合应激反应(Integrate Stress Response,ISR)分为内质网应激、氨基酸缺乏应激、病毒感染应激和血红素缺陷应激,对应激活四种蛋白激酶——PERK、GCN2、PKR和HRI。已有研究表明,这四种蛋白激酶可通过磷酸化蛋白翻译起始因子eIF2α选择性激活转录因子ATF4的翻译,随后ATF4激活其下游靶基因的表达完成细胞应激反应程序。
10月16日,中国科学院生物物理研究所李新建研究团队在《自然-通讯》(Nature Communications)上,在线发表了题为ATF4-dependent fructolysis fuels growth of glioblastoma multiforme的研究论文。该研究揭示了GBM在葡萄糖缺乏条件下激活细胞ISR,通过针对ATF4染色质免疫共沉淀的高通量测序(ATF4 ChIP-Seq),发现ATF4能够结合在果糖代谢通路中的两个关键蛋白(GLUT5和ALDOB)编码基因的启动子区域并激活这两个蛋白的表达,同时,通过基因编辑破坏SLC2A5和ALDOB启动子区域与ATF4结合的DNA序列能有效抑制ISR诱导的果糖代谢。进一步,功能研究发现,从基因水平以及小分子抑制剂水平阻断ISR诱导的果糖代谢能够显著抑制GBM以果糖(非葡萄糖)为供能物质条件下的细胞增殖和克隆形成能力。在裸鼠移植瘤模型中,研究发现GBM组织中广泛存在由葡萄糖缺乏导致的ISR,阻断ISR诱导的果糖代谢能有效延缓GBM的进展。上述研究提示果糖是GBM在葡萄糖缺乏条件下的替代供能营养物质,以及GBM病人应警惕高果糖饮食,因此,设计小分子药物靶向果糖代谢是潜在的GBM治疗手段。
ATF4介导的果糖代谢促进胶质瘤的恶性进展。在能量应激(葡萄糖缺乏)条件下蛋白激酶GCN2和PERK通过磷酸化蛋白翻译起始因子eIF2α选择性激活转录因子ATF4的翻译,ATF4结合在果糖代谢通路中的两个关键基因SLC2A5和ALDOB的启动子区域并激活这两个基因的表达诱导的果糖代谢,为葡萄糖缺乏的GBM细胞提供能量来源并维持肿瘤恶性进展。
版权声明 本网站所有注明“来源:生物谷”或“来源:bioon”的文字、图片和音视频资料,版权均属于生物谷网站所有。非经授权,任何媒体、网站或个人不得转载,否则将追究法律责任。取得书面授权转载时,须注明“来源:生物谷”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。