打开APP

脑电信号识别研究中取得进展

来源:沈阳自动化所 2023-12-06 13:46

该团队将捕捉大脑意图EEG信号表征为协防差矩阵,从平直的欧氏空间转换到弯曲的对称正定黎曼空间,利用粒子群算法在黎曼空间中对协防差矩阵进行降维

脑机接口是大脑与外界交互的新方式。脑机接口绕开外周神经,通过在大脑与外部设备之间建立直接连接以进行信息交换,在神经康复、认知计算等领域颇有应用前景。然而,如何实时地、有效地将大脑意图转换为控制外部设备的指令,是制约脑机接口技术发展的关键问题之一。

近日,中国科学院沈阳自动化研究所神经计算团队与中国矿业大学合作,将粒子群算法引入到对称正定黎曼空间,对脑电图(Electroencephalogram,EEG)的协防差矩阵表征数据进行了维度筛选,有效提高了EEG信号识别效率,且选择出的重要维度符合神经生理学发现。相关研究成果发表在《知识库系统》(Knowledge-Based Systems)上。

该团队将捕捉大脑意图EEG信号表征为协防差矩阵,从平直的欧氏空间转换到弯曲的对称正定黎曼空间,利用粒子群算法在黎曼空间中对协防差矩阵进行降维,将协防差矩阵的行和与其对应的列看作为一个特征组,去除对EEG识别效果影响小或具有干扰的特征组。这一方法在提高识别效率的同时提高了识别正确率。与目前大部分黎曼空间数据基于映射的降维方法不同,该方法具有可解释性,选择出的重要维度能够回溯到EEG信号的通道,在运动想象EEG信号上选择出的重要维度大致分布在感觉运动皮层,符合神经生理学的发现。该方法为推进脑机接口的实际应用提供了一种方案。

研究工作得到国家自然科学基金和国家重点研发计划等的支持。

EEG信号的协防差矩阵表征构成弯曲的黎曼空间

版权声明 本网站所有注明“来源:生物谷”或“来源:bioon”的文字、图片和音视频资料,版权均属于生物谷网站所有。非经授权,任何媒体、网站或个人不得转载,否则将追究法律责任。取得书面授权转载时,须注明“来源:生物谷”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

87%用户都在用生物谷APP 随时阅读、评论、分享交流 请扫描二维码下载->