打开APP

Plos Genetics: 新研究有助于解决“超级细菌”耐药性的问题

  1. 耐药性
  2. 超级细菌
  3. 鞭毛

来源:本站原创 2019-10-23 02:23

2019年10月22日 讯 /生物谷BIOON/ --最近,来自印第安纳大学的一项新研究揭示了关键蛋白质在帮助细菌“吸收”环境中的DNA的机制。利用新的成像方法,科学家们首次看到细菌如何利用鞭毛与环境中的DNA结合。通过揭示该过程涉及的机制,该结果可能有助于加快研究阻止细菌感染的新方法。这项新研究发表在最近的《 PLOS Genetics》杂志上。文章作者,助理教授Ankur Dalia说:“细菌
2019年10月22日 讯 /生物谷BIOON/ --最近,来自印第安纳大学的一项新研究揭示了关键蛋白质在帮助细菌“吸收”环境中的DNA的机制。

利用新的成像方法,科学家们首次看到细菌如何利用鞭毛与环境中的DNA结合。通过揭示该过程涉及的机制,该结果可能有助于加快研究阻止细菌感染的新方法。

这项新研究发表在最近的《 PLOS Genetics》杂志上。

文章作者,助理教授Ankur Dalia说:“细菌鞭毛与DNA结合的能力是细菌进化过程中出现的新特征,也是影响现有抗菌药物活性的主要原因,对这一过程其内在机制的理解可以帮助制定更好的抗菌措施。

(图片来源:Www.pixabay.com)

“吞噬-整合”来自环境中的遗传物质是细菌在不断进化中形成的特征,细菌通过该过程整合了来自其他微生物的特点,其中包括产生抗生素耐药性的基因。

抗生素的滥用会加快病原菌的进化以产生广泛的耐受性。因此,目前针对阻止耐药性细菌感染的新方法的需求正在不断增长。据估计,到2050年每年将有1000万人死于抗药性细菌感染。

作者称,尽管在显微镜下细菌的鞭毛看起来像是微小的“手臂”,但它们实际上更像是一种能够快速组装,然后不断拆解的装置。鞭毛结构中的每个“片段”实际上是被称为“菌毛蛋白”的蛋白质亚基,而后通过组装形成纤维状结构。

文章第一作者,Jennifer Chlebek博士补充说:“此前研究表明,鞭毛的聚合和解聚过程中牵涉到两个主要的动力蛋白。在这项研究中,我们则发现解聚过程还涉及第三种动力蛋白,并且我们阐明了其工作原理。”

此前研究揭示的控制菌毛活性的两个动力蛋白分别为:构建鞭毛的蛋白PilB和解构鞭毛的PilT。这些蛋白质通过消耗ATP运行。在这项研究中,研究人员表明,关闭PilT的活性并不能完全防止菌毛的解聚。他们发现,即使PilT处于非活动状态,第三个运动蛋白PilU也可以促进菌毛解聚的发生,尽管其速度相比野生型要慢五倍。研究人员还发现,同时关闭两种解聚蛋白的活性会使解聚过程的速度下降50倍。

此外,研究发现,单独关闭PilU也会影响鞭毛解聚的强度。该研究还表明,PilU和PilT不会相互交流,他们彼此独立,以某种方式相互协调以介导鞭毛的回缩。(生物谷Bioon.com)

资讯出处:DNA-reeling bacteria yield new insight on how superbugs acquire drug-resistance

原始出处:Jennifer L. Chlebek, Hannah Q. Hughes, Aleksandra S. Ratkiewicz, Rasman Rayyan, Joseph Che-Yen Wang, Brittany E. Herrin, Triana N. Dalia, Nicolas Biais, Ankur B. Dalia. PilT and PilU are homohexameric ATPases that coordinate to retract type IVa pili. PLOS Genetics, 2019; 15 (10): e1008448 DOI: 10.1371/journal.pgen.1008448

版权声明 本网站所有注明“来源:生物谷”或“来源:bioon”的文字、图片和音视频资料,版权均属于生物谷网站所有。非经授权,任何媒体、网站或个人不得转载,否则将追究法律责任。取得书面授权转载时,须注明“来源:生物谷”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

87%用户都在用生物谷APP 随时阅读、评论、分享交流 请扫描二维码下载->