打开APP

研究开发出基于深度学习的单细胞转录组分析模型

  1. 单细胞转录组分析模型

来源:北京基因组所 2020-11-12 08:32

  单细胞转录组作为单个细胞的特征,可更加精确地定义细胞的类型。常规的基于单细胞转录组的分类方法首先是进行无监督的聚类,然后根据每个集群(Cluster)特异表达的细胞标记基因来对集群进行标注。虽然基于无监督的分类方法更容易发现新细胞类型,但是人工标注的过程费时费力。目前已有的基于监督学习的自动分类方法,大部分无法兼顾到方法的可解释性以及

 

 

单细胞转录组作为单个细胞的特征,可更加精确地定义细胞的类型。常规的基于单细胞转录组的分类方法首先是进行无监督的聚类,然后根据每个集群(Cluster)特异表达的细胞标记基因来对集群进行标注。虽然基于无监督的分类方法更容易发现新细胞类型,但是人工标注的过程费时费力。目前已有的基于监督学习的自动分类方法,大部分无法兼顾到方法的可解释性以及新细胞类型的发现。

近日,中国科学院北京基因组研究所(国家生物信息中心)研究员蔡军研究组、北京师范大学教授张江研究组合作在Nature Machine Intelligence发表了题为An interpretable deep-learning architecture of capsule networks for identifying cell-type gene expression programs from single-cell RNA-sequencing data的研究成果,构建出决策过程可解释的深度学习网络模型,单细胞胶囊网络(single cell Capsule Network, scCapsNet),并用于单细胞转录组分析。相对于其他单细胞转录组自动分析工具,单细胞胶囊网络能更稳定更高效地分辨出属于新细胞类型的细胞。同时,单细胞胶囊网络能通过模型的内部参数找出细胞类型相关基因。通过细胞类型相关基因,单细胞胶囊网络能将基因与细胞类型直接联系起来,提高了深度学习模型的可解释性。本质上,单细胞胶囊网络将基因的表达特征和细胞类型特征进行低维编码,这样的编码富含生物学意义。(生物谷Bioon.com)

 

版权声明 本网站所有注明“来源:生物谷”或“来源:bioon”的文字、图片和音视频资料,版权均属于生物谷网站所有。非经授权,任何媒体、网站或个人不得转载,否则将追究法律责任。取得书面授权转载时,须注明“来源:生物谷”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

87%用户都在用生物谷APP 随时阅读、评论、分享交流 请扫描二维码下载->