打开APP

Nat Methods:瞿昆/黎斌/陈发来合作系统性评估单细胞多组学分析算法

来源:生物探索 2024-10-02 09:07

结果显示,在蛋白质丰度预测方面,totalVI 和 scArches 表现最为优异;在染色质可及性预测中,LS_Lab 算法排名领先。

中国科学技术大学生命科学与医学部瞿昆教授课题组、北京生命科学研究所黎斌研究员课题组,以及中国科学技术大学数学科学学院陈发来教授课题组联合在Nature Methods期刊上发表了文章“Benchmarking algorithms for single-cell multi-omics prediction and integration”。他们通过对百万量级单细胞多组学数据进行分析,系统评估了14种单细胞模态预测算法和18种单细胞多组学整合算法的性能。

图片

在本次研究中,团队收集了来自47个数据集的上百万个单细胞多组学数据,涵盖多个生物样本和实验平台。他们设计了一套全面的评估流程,结合算法的准确性、鲁棒性和计算资源消耗等多维度指标,系统评估了领域内最常用的算法。结果显示,在蛋白质丰度预测方面,totalVI 和 scArches 表现最为优异;在染色质可及性预测中,LS_Lab 算法排名领先。在多组学整合分析中,Seurat、MOJITOO 和 scAI 在垂直整合上表现突出,而 totalVI 和 UINMF 在水平整合和马赛克整合任务中展现了卓越性能。这一研究不仅为算法设计提供了新思路,还为未来多组学数据的分析和应用奠定了重要基础。为帮助科研人员选择合适的分析工具,研究团队在GitHub上发布了完整的分析流程、代码和测试数据集,供同行使用和改进。

研究团队还通过深入探讨这些算法的数学原理,发现降噪处理是提高单细胞数据预测精度的关键。在性能评估中,机器学习算法(如基于奇异值分解的LS_Lab 和 Guanlab-dengkw)以及基于概率模型的深度学习算法(如totalVI)均表现出显著优势。然而,研究还指出,现有模态预测算法在某些关键蛋白的预测性能上仍有待提升,染色质可及性预测的准确性也需进一步优化。

图片

图1. 评估流程示意图(Credit: Nature Methods

在组学大数据时代,对复杂数据的精确解析需要依赖生物学与数学、计算机科学的深度融合。跨学科合作不仅推动了生物医学领域的创新发展,也为未来研究提供了新的可能性。此次研究的成功正是多学科背景团队密切合作的结果,充分展示了学科交叉在现代生物学研究中的重要性。通过这样的合作,研究团队期望进一步推动单细胞多组学技术在科学研究中的广泛应用,为基础研究和临床应用提供新的洞见。

版权声明 本网站所有注明“来源:生物谷”或“来源:bioon”的文字、图片和音视频资料,版权均属于生物谷网站所有。非经授权,任何媒体、网站或个人不得转载,否则将追究法律责任。取得书面授权转载时,须注明“来源:生物谷”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

87%用户都在用生物谷APP 随时阅读、评论、分享交流 请扫描二维码下载->