打开APP

Nature重磅:血脑屏障如何破?Omega-3可能是解锁的关键

  1. omega-3

来源:生物探索 2021-06-22 12:13

  血脑屏障,一层紧密堆积的细胞,排列在大脑的血管中,可以阻止毒素、病原体和一些营养物质进入大脑,是大脑为保护中枢神经系统免受伤害而形成的一个重要进化机制。遗憾的是,它同样也是治疗药物进入大脑内部的一个主要障碍。美国哥伦比亚大学的研究人员联合新加坡国立大学、芝加哥大学等在国际顶级期刊" Nature "上发表了一篇题为"Structura

 

 

血脑屏障,一层紧密堆积的细胞,排列在大脑的血管中,可以阻止毒素、病原体和一些营养物质进入大脑,是大脑为保护中枢神经系统免受伤害而形成的一个重要进化机制。遗憾的是,它同样也是治疗药物进入大脑内部的一个主要障碍。

美国哥伦比亚大学的研究人员联合新加坡国立大学、芝加哥大学等在国际顶级期刊" Nature "上发表了一篇题为"Structural basis of omega-3 fatty acid transport across the blood–brain barrier"的研究论文。

该研究描述了一种将Omega-3运输到大脑中的分子工作机制,可能是解锁血脑屏障的关键,可以帮助研究人员开发出能够更好地穿过血脑屏障的神经疾病药物。

Omega-3脂肪酸,对大脑和眼睛的发育很重要。它们主要来自饮食来源,并由肝脏转化为一种称为溶血磷脂酰胆碱(LPC)的溶血磷脂,以便分别通过血脑屏障和血视网膜屏障从血液进入大脑和视网膜。

一种称为MFSD2A的蛋白质位于这些内皮细胞的膜上,并充当Omega-3穿过这些屏障的分子通道。然而,MFSD2A如何介导携带Omega-3脂肪酸的溶血脂的摄取仍然是个谜。

研究人员表示,如果我们知道MFSD2A的样子,就可以解决这个谜团,并利用这些信息设计可以劫持这个分子网关的神经病治疗药物,伪装成Omega-3脂肪酸溶血磷脂,有点像是为了设计一把合适的钥匙而去观察锁的样子。

为了研究MFSD2A的结构,研究小组使用了一种称为单粒子低温电子显微镜的技术,将样品冷却到低温,在亚纳摩尔尺度上观察分子,并结合新的生化分析。这使他们能够揭示蛋白质结构的原子级细节,然后用于计算机模拟探索其工作机制。

研究人员使用大规模原子集合分子动力学(MD)模拟,然后使用先进的计算生物物理学方法对MD数据进行详细分析,获得了转运蛋白的3D结构图。

结构分析表明,MFSD2A呈碗状,omega-3结合在碗的特定一侧,碗是倒置的,面向细胞内部,但这只是蛋白质的一个静态3D结构,在现实中,蛋白质必须移动才能运输Omega-3。

为了了解这些运动可能是什么样子,研究人员使用蛋白质的3D模型作为运行计算模拟的起点,揭示了转运蛋白如何移动并调整其形状以将Omega-3释放到大脑中。

而且,研究人员还测试并确认了从结构和计算模拟得出的关于MFSD2A工作原理的假设确定蛋白质中重要的特定部分。

总之,血脑屏障阻挡了约98%的药物吸收,限制了神经系统疾病的治疗。研究中揭示的结构信息可以用来更好地设计可以通过MFSD2A转运的神经治疗药物。

研究人员表示,还需要进一步的研究来揭示MFSD2A如何介导溶血磷脂通过血脑屏障转运的更多细节。(生物谷Bioon.com)

 

版权声明 本网站所有注明“来源:生物谷”或“来源:bioon”的文字、图片和音视频资料,版权均属于生物谷网站所有。非经授权,任何媒体、网站或个人不得转载,否则将追究法律责任。取得书面授权转载时,须注明“来源:生物谷”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

87%用户都在用生物谷APP 随时阅读、评论、分享交流 请扫描二维码下载->