Molecular Plant:关联分析方法学研究中取得突破性进展
来源:华中农业大学 2022-03-08 13:33
华中农业大学植物科学技术学院章元明教授团队在植物学领域期刊Molecular Plant上发表了题为“A compressed variance component mixed model for detecting QTNs, and QTN-by-environment and QTN-by-QTN interactions in genom
华中农业大学植物科学技术学院章元明教授团队在植物学领域期刊Molecular Plant上发表了题为“A compressed variance component mixed model for detecting QTNs, and QTN-by-environment and QTN-by-QTN interactions in genome-wide association studies”的研究论文,报道了关联分析方法学研究的突破性进展。
该研究显着减少了混合模型中方差组分的数目,统一构建了关联分析主效位点、环境互作和位点间互作检测以全面剖析数量性状遗传构成的新框架,实现了从单环境数据关联分析到多环境数据联合分析的转变,为复杂性状基因发掘提供了新方法。
全基因组关联分析是在自然群体中将标记基因型与复杂性状表型关联以挖掘复杂性状基因的方法,在动物、植物、林木和人类遗传中广泛应用。在QTN检测中,虽然关联群体标记通常有AA、Aa和aa三种基因型,应该估计加性与显性两种效应,但是目前的几乎所有方法只估计等位基因替代效应,导致效应估计混杂和多基因背景控制不全面。在QTN×环境互作(QEI)和QTN×QTN互作(QQI)检测中,除上述问题外,还存在可供利用的方法十分有限,导致了作物关联分析几乎是单环境数据分析或多环境BLUP值分析,少见QEI和QQI的应用研究报道。
在QTN检测全基因组扫描时,新提出的压缩方差组分混合模型首先估计标记基因型AA、Aa和aa的效应,然后将这些基因型效应估计值剖分为QTN的加性与显性效应。这种模型与我们已提出的mrMLM方法结合,形成3VmrMLM方法。同时,这种方法延伸至QEI和QQI检测。由此,将QTN、QEI和QQI检测的5、10和15个方差组分混合模型统一压缩为3个方差组分的混合模型,构建了一个能检测各种位点并估计其效应的统一关联分析新框架(图1)。
在Monte Carlo模拟研究中,3VmrMLM正确检测了所有主效与互作效应位点并渐进无偏估计其效应,具有高的检测功效、高的效应与位置估计精度和低的假阳性率(图2)。
用3VmrMLM重新分析了Huang et al. (2015)的1439个杂种F1数据集(1098527个SNP标记;10个产量和品质性状)。结果表明:在主效QTNs附近共发掘了269个已报道的与性状真正关联的基因,在QEIs附近共发掘了45个已报道的与性状真正关联的基因×环境互作,在QQIs附近共发掘了20个已报道的与性状真正关联的基因×基因互作,验证了3VmrMLM的有效性。水稻抽穗期的结果如图3所示。
进一步分析所有10个性状已知基因附近的QTNs、QEIs和QQIs发现:有67.49%位点的R2≤1,35.52%的位点稀有等位基因频率≤0.10,说明3VmrMLM对小效应、稀有等位基因频率位点有较强的检测能力;有30.54%的多效基因,54.36%的基因被两个以上数据集重复检测,进一步说明了实际数据分析结果的可靠性和高的可重复性。此外,多环境数据关联分析新策略能更全面揭示复杂性状的遗传基础。
在QEI检测中,发现不同环境间检测结果不稳定的可能原因之一是同一(或连锁)位点的主效与环境互作效应的叠加。当关联群体较大时,建议采用不同试验设计及其统计分析方法来校正复杂性状表型观测值,以控制区组内误差。当环境间误差方差异质时,我们新发展的异质方差混合模型方法也是有效的。当环境数较大时,两种维数减少方法也有相似的效果。这种新方法还能在动物和人类遗传中应用。在QQI检测中,提出的具有多基因背景的变量选择方法具有较高检测功效与参数估计精度,还发现加显互作或显加互作有时会误判为主效的现象并提出了解决办法。
章元明教授领衔的统计基因组学团队多年聚焦于作物复杂性状基因发掘方法学研究,取得了一系列成果。在关联分析方面,最早提出关联分析混合模型方法,联合优化压缩混合模型方法,发展的一系列多位点方法已被广泛应用;在双亲分离群体基因发掘方面,提出了高功效检测小效应与连锁位点的GCIM方法、F2群体极端池基因快速检测的平滑LOD得分统计量以及将Bayesian估计似然化的惩罚最大似然方法,参与发展了多QTL检测的压缩Bayesian估计方法。这些结果在Mol Plant (2019, 2022)、Brief Bioinform (2018, 2019, 2022)、BMC Biol (2014)、Genom Proteom Bioinf (2020)、Plant J (2020)、J Exp Bot (2020)和Genetics (2005)等刊物上发表。(生物谷Bioon.com)
版权声明 本网站所有注明“来源:生物谷”或“来源:bioon”的文字、图片和音视频资料,版权均属于生物谷网站所有。非经授权,任何媒体、网站或个人不得转载,否则将追究法律责任。取得书面授权转载时,须注明“来源:生物谷”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。