打开APP

Science:重大突破!揭示人黏连蛋白通过DNA环挤压折叠基因组机制

  1. 凝缩蛋白
  2. 基因组
  3. 灯刷染色体
  4. 环挤压
  5. 细胞核
  6. 黏连蛋白

来源:本站原创 2019-11-24 21:19

2019年11月24日讯/生物谷BIOON/---为了将大约两米长的人DNA携带的遗传信息包装到细胞核中,人细胞所要完成的工作相当于将80公里长的线放入一个足球大小的球体中。早在1882年,德国生物学家Walther Flemming便通过显微镜进行了观察,发现了有关这种包装是如何实现的线索。他当时观察到位于卵细胞细胞核内的DNA环,这让他想起了那个时代用于清洁煤气灯的刷子,于是他就将这些结构命名
2019年11月24日讯/生物谷BIOON/---为了将大约两米长的人DNA携带的遗传信息包装到细胞核中,人细胞所要完成的工作相当于将80公里长的线放入一个足球大小的球体中。早在1882年,德国生物学家Walther Flemming便通过显微镜进行了观察,发现了有关这种包装是如何实现的线索。他当时观察到位于卵细胞细胞核内的DNA环,这让他想起了那个时代用于清洁煤气灯的刷子,于是他就将这些结构命名灯刷染色体(lampbrush chromosome),却不知道它们是什么,也不知道它们有什么用途。
图片来自Cees Dekker Lab TU Delft/Scixel。

人们花了几十年的时间才将灯刷染色体识别为DNA链整齐地折叠而形成的DNA环(loop),而且花了更长的时间才意识到DNA在所有细胞中始终被折叠成这样的结构;直到2019年,人们才发现这种折叠是如何实现的。

在一项新的研究中,奥地利维也纳生物中心分子病理学研究所(IMP)主任Jan-Michael Peters及其团队首次证实一种分子机器通过“环挤压(loop extrusion)”主动地和有目的地折叠DNA,从而在间期细胞中实现了多种重要功能。这种针对DNA成环(DNA looping,即形成DNA环)过程提出的新见解改变了关于基因组如何在细胞内组装的旧观点。这一发现阐明了生命的基本机制,并解决了长达十年的科学争端。相关研究结果于2019年11月21日在线发表在Science期刊上,论文标题为“DNA loop extrusion by human cohesin”。

从进化论的古老性来看,DNA环形成的过程既不是随机的也不是任意的。从细菌到人类,所有生物的细胞都具有这种功能。这种折叠机制的原始功能尚不清楚,我们可能永远也找不出来,但是近年来发现了一些重要的功能。通过形成DNA环,DNA大分子上相隔较远的区域变得非常接近并能够相互作用。这种物理接触在基因调控中起着重要作用,在基因调控中,称为增强子的DNA片段影响哪些基因是活跃的。DNA环形成对于免疫细胞产生各种抗体的能力也是必不可少的。

关于这些DNA环如何被保持在适当位置上的想法起源自IMP Peters实验室前博士后研究员Kerstin Wendt的研究工作。2008年,她的研究结果已提示着蛋白复合物黏连蛋白(cohesin)完成了DNA环形成。10年前,IMP科学家Kim Nasmyth的实验室鉴定出黏连蛋白是一种分子胶(molecular glue),可在有丝分裂早期将姐妹染色单体保持在一起,Nasmyth最近也因这一发现获得2020年科学突破奖(Breakthrough Prize)。黏连蛋白通常呈环状结构(ring-shaped),被认为像钩环(carabiner)一样夹在DNA上。
黏连蛋白分子积极地将单个DNA片段挤压成DNA环,Science, 2019, doi:10.1126/science.aaz3418。

长期以来,这种DNA折叠状态一直被认为是一种静态构型,黏连蛋白分子的作用非常类似于窗帘杆上的环,可滑动到DNA上而不与它结合。关于如何形成DNA环的想法来自包括麻省理工学院物理学家Leonid Mirny在内的几位科学家。Mirny提出黏连蛋白最初会形成微小的DNA环,然后会逐渐变大,直到在这种“挤压”过程中,黏连蛋白被确定这些环锚定位置的DNA的边界阻止。然而,这种环挤压假说与当时也已建立的DNA是静态的和黏连蛋白在它的周围形成被动环状结构的观点完全不同,因此许多生物学家对此表示怀疑。正是由于论文第一作者、Peters实验室资深博士后研究员Iain Davidson和他的同事们的聪明才智和费时费力的实验,这一争议如今才得以解决。

Peters团队(包括Davidson)能够在体外的一种简化系统中重建黏连蛋白的功能。因此,Davidson能够观察到单个黏连蛋白分子如何将DNA的单个片段快速地挤压成DNA环,就像Mirny和其他人所假定的那样。他的发现影响深远,并以多种方式改变了对基因组的整体认识:

(1)基因组不是静态的,而是高度动态的结构。
(2)基因组DNA的折叠是一种受到主动调节的过程,它涉及通过挤压让DNA分子成环,并且许多DNA环在不断运动。
(3)这种DNA成环是由黏连蛋白介导的,因此黏连蛋白必须是一种分子马达,类似于诸如肌球蛋白之类的其他马达蛋白。
(4)黏连蛋白分子在DNA周围形成钩环状的环状结构,而且还必须通过多个结合位点动态连接到DNA上,这样才能够折叠DNA。正如去年所发现的那样,凝缩蛋白(condensin)也必须如此。

Peters说,“这是一次真正的范式转变。早期的观察结果给了我们一些提示,但是Davidson领导的这项新的研究如今就证实这一点。在我的科学生涯中,很少有其他的发现像这个发现一样意义深远。”

与有关基因组的其他基本发现---比如DNA半保留复制和DNA通过同源重组进行重排---一样,这些发现有望很快成为教科书知识。对于IMP研究人员而言,下一个要解决的重要问题是黏连蛋白如何与DNA精确结合,然后它如何移动DNA以使得它折叠成DNA环,以及这个过程如何受到控制。他们已发现一种称为NIPBL-MAU2的蛋白复合物,对于黏连蛋白的运动功能至关重要,而不仅仅是像以前认为的那样,将黏连蛋白加载到DNA上。

Davidson,说:“我们如今可以使用我们的设备进一步放大这种复杂的DNA成环分子过程。阐明这一机制也可能有助于我们理解为什么某些人类疾病是由黏连蛋白发生的突变引起的。”(生物谷 Bioon.com)

参考资料:

1.Iain F. Davidson et al. DNA loop extrusion by human cohesin. Science, 2019, doi:10.1126/science.aaz3418.

2.Cohesin - a molecular motor that folds our genome
https://www.imp.ac.at/news/detail/article/cohesin-a-molecular-motor-that-folds-our-genome/

3.Mahipal Ganji et al. Real-time imaging of DNA loop extrusion by condensin. Science, 2018, doi:10.1126/science.aar7831.

4.Science:重磅!首次实时观察到凝缩蛋白挤压DNA形成环状结构
http://news.bioon.com/article/6718020.html

5.Tsuyoshi Terakawa et a. The condensin complex is a mechanochemical motor that translocates along DNA. Science, 2017, doi:10.1126/science.aan6516.

6.Science:重磅!首次证实凝缩蛋白具有马达功能
http://news.bioon.com/article/6709719.html

7.Johan H. Gibcus et al. A pathway for mitotic chromosome formation. Science, 2018, doi:10.1126/science.aao6135.

8.Science:136年来,终于破解有丝分裂期间染色体折叠之谜
http://news.bioon.com/article/6716386.html

9.Kerstin S. Wendt et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature, 2008, doi:10.1038/nature06634.

10.Yu Zhang et al. The fundamental role of chromatin loop extrusion in physiological V(D)J recombination. Nature, 2019, doi:10.1038/s41586-019-1547-y.

11.Xuefei Zhang et al. Fundamental roles of chromatin loop extrusion in antibody class switching. Nature, 2019, doi:10.1038/s41586-019-1723-0.

12.Winners of the 2020 breakthrough prize in life sciences, fundamental physics and mathematics announced
https://breakthroughprize.org/News/54


版权声明 本网站所有注明“来源:生物谷”或“来源:bioon”的文字、图片和音视频资料,版权均属于生物谷网站所有。非经授权,任何媒体、网站或个人不得转载,否则将追究法律责任。取得书面授权转载时,须注明“来源:生物谷”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

87%用户都在用生物谷APP 随时阅读、评论、分享交流 请扫描二维码下载->