打开APP

研究揭示海洋鱼类的恒温演化与环境适应机制

  1. 恒温演化

来源:南海海洋研究所 2021-11-19 13:42

  近日,由中国科学院南海海洋研究所、中科院热带海洋生物资源与生态重点实验室(LMB)研究员林强团队和厦门大学环境与生态学院教授王大志团队等合作完成的海洋鱼类恒温与环境适应机制解析的最新研究进展,发表在The Innovation(《创新》)上。在脊椎动物演化史上,恒温物种的出现是一个重大进化转变。传统认为,哺乳类和鸟类是典型的恒温动物,

 

 

近日,由中国科学院南海海洋研究所、中科院热带海洋生物资源与生态重点实验室(LMB)研究员林强团队和厦门大学环境与生态学院教授王大志团队等合作完成的海洋鱼类恒温与环境适应机制解析的最新研究进展,发表在The Innovation(《创新》)上。

在脊椎动物演化史上,恒温物种的出现是一个重大进化转变。传统认为,哺乳类和鸟类是典型的恒温动物,而实际上恒温已在其它脊椎动物分支中独立进化多次(图1)。月亮鱼(Lampris spp.)是目前已报道的唯一一类“全身恒温”的鱼类,改变了鱼类均是变温动物的传统认知。月亮鱼是研究恒温早期起源与演化的理想对象,也是展现不同恒温物种趋同演化的理想案例。

月亮鱼因其体型侧扁、形似圆月而得名,最大体长可达2米,重量可达140千克,视觉敏锐,是全球性分布的大型鱼类。月亮鱼肉色通红,体温比周围海水温度高约5℃,通过不断拍打胸鳍利用肌肉收缩大量产热,并且在其鳃部存在一个逆流热交换的血管网络以减缓血液流经鳃部时的热量散失,这种产热和保温能力使得月亮鱼成为名副其实的恒温鱼类。研究团队组装了染色体水平的月亮鱼基因组,发现其基因组中的转座元件含量较高,其长末端重复序列(LTR)的含量在目前已报道的鱼类中最高,科研人员在LTR周围找到多个能量转化、视觉发育相关的基因,并富集到如氧转运、ATP结合等关键能量代谢通路(图2)。这些功能基因周围转座元件的频繁跳跃可能为基因的适应进化及表达调控提供素材。

研究选择具有恒温特征的脊椎动物进行趋同进化分析,筛选到如线粒体钠钙交换蛋白(slc8b1), 谷氧还蛋白-3(glrx3)等基因在多个恒温物种谱系中具有显着的趋同信号,这些基因在线粒体钠/钙离子交换与血红蛋白成熟方面发挥关键作用。此外,科研人员发现血红素合成、电子传递链活性等相关基因在恒温物种中具有更快的进化速率(图3)。研究揭示,不同谱系的恒温脊椎动物在进化上存在明显分子趋同特征。研究还发现,月亮鱼基因组中多个与肌肉发育、收缩过程以及逆流热交换血管系统形成相关的基因(如肌钙蛋白troponin,血管内皮调节蛋白robo4等)受到显着的选择或者发生特异性扩张(图4)。此外,与氧化磷酸化、糖代谢等过程相关的多个基因也发生适应性变化。这些基因的适应性变化可能共同驱动了月亮鱼恒温性状的发生与维持。

月亮鱼是红肌体重占比较高的鱼类,其胸鳍基部发达的红肌是主要产热组织。鱼体多个部位肌肉组织的转录组和蛋白组数据比较分析发现,氧化磷酸化和产热相关基因、蛋白在胸鳍红肌中高表达,同样作为产热组织,胸鳍红肌与背部红肌的基因表达模式也更相近。此外,研究还探讨了恒温为月亮鱼带来的诸多生存优势,如适应性免疫系统的特化;视觉发育相关基因(如晶状体蛋白等)显着扩张;嗅觉相关基因明显收缩,其嗅觉受体(OR)数量比嗅觉退化的海马还要低(图5)。

恒温在脊椎动物中的演化历程为进一步认知动物的环境适应机制提供了窗口,月亮鱼作为海洋环境中独特的恒温物种,改变了对恒温动物的传统认知,其完整的基因组信息也为认识恒温的早期起源与演化提供了重要线索。(生物谷Bioon.com)

 

版权声明 本网站所有注明“来源:生物谷”或“来源:bioon”的文字、图片和音视频资料,版权均属于生物谷网站所有。非经授权,任何媒体、网站或个人不得转载,否则将追究法律责任。取得书面授权转载时,须注明“来源:生物谷”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

87%用户都在用生物谷APP 随时阅读、评论、分享交流 请扫描二维码下载->