打开APP

SCIENCE ADVANCES:科学家阐明连接细胞的隧道纳米管的形成机制

来源:科技部生物中心 2022-04-29 15:15

近日,韩国浦项科技大学研究团队在《SCIENCE ADVANCES》发表了文章。

 

细胞间通讯和物质交换是多细胞生物发育、组织修复和细胞生存的重要环节。最近发现细胞间存在隧道纳米管(tunneling nanotubes,TNTs)连接,并以此进行长距离通讯。TNTs是一种细胞间长距离的物理连接,能够在相连的细胞之间实现远程、定向的通讯.研究表明,不同细胞间TNTs在结构、形成机制和功能特性上存在相当大的差异。其主要功能是介导广泛的细胞间物质交换,包括各种信号分子,RNA,蛋白质,细胞器甚至病原体,在生理和病理过程中都发挥重要作用.各种细胞类型中均发现有TNTs的形成,尤其在神经元细胞和神经胶质细胞中得到广泛关注.神经元细胞间或神经元细胞与星形胶质细胞间形成的TNTs,能够介导电耦合,还参与神经退行性疾病相关致病蛋白质的转移和/或传播,进而在神经系统发育和疾病进展中发挥作用。

连接细胞的膜纳米管或隧道纳米管(tunneling nanotubes,TNTs)被认为是远距离细胞间进行传递和运输的重要途径,其结构可以延伸数十微米,并在数小时内保持坚固,但这种精细结构的形成机制尚不清楚。

近日,韩国浦项科技大学研究团队在《SCIENCE ADVANCES》发表了题为“Formation of cellular close-ended tunneling nanotubes through mechanical deformation”的文章,阐明了TNTs的形成机制。

连接不同细胞的单个丝状足桥 (SFB) 被称为 TNTs,丝状伪足上细胞粘附分子的细胞间相互作用维持了连接细胞的双丝状足桥(double filopodial bridge,DFB),双丝状足桥是由两个丝足通过DFB的螺旋变形进行物理接触而产生的。研究团队使用实时荧光显微镜和超分辨率荧光显微镜观察了TNTs的形成过程,发现TNTs是从DFB发展而来。当一个DFB末端通过细胞间钙粘蛋白-钙粘蛋白相互作用牢固地附着时,DFB向封闭式TNTs转变,这一转变很可能是由扭曲的DFB中积累的机械能破坏两个丝状伪足粘附而引发的。研究团队通过DFB的螺旋变形开发了TNTs形成的物理模型,并通过测量它们的弹性特性和计算机辅助模拟来验证。

 这些研究揭示了TNTs形成的机制,以及有关DFB独特的纳米结构信息,该结构在形成连接细胞的TNTs中起着关键作用。TNTs可能在人类疾病和发育的细胞之间的长距离通信中发挥重要作用,阐明TNTs形成机制将为深入研究人类疾病提供新思路。

版权声明 本网站所有注明“来源:生物谷”或“来源:bioon”的文字、图片和音视频资料,版权均属于生物谷网站所有。非经授权,任何媒体、网站或个人不得转载,否则将追究法律责任。取得书面授权转载时,须注明“来源:生物谷”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

87%用户都在用生物谷APP 随时阅读、评论、分享交流 请扫描二维码下载->