打开APP

人工突触模拟忆阻器研究方面取得进展

  1. 人工突触模拟忆阻器

来源:上海微系统所 2019-03-03 10:06

基于冯·诺依曼架构的传统数字计算机,其数据处理与存储分离结构限制了其工作效率,同时带来巨大功耗,无法满足大数据时代下计算复杂性的需求。同时,上述缺陷也阻碍了深度学习神经网络的进一步发展。而借鉴人脑神经突触结构,构筑结构简单、低功耗、高低阻态连续可调的非易失性阻态忆阻器是实现类脑神经形态计算中至关重要的一步。目前,模仿生物神经系统中突触间隙神经递质释放过程与电信号传递处理调控构建的多栅极人造神经元晶



基于冯·诺依曼架构的传统数字计算机,其数据处理与存储分离结构限制了其工作效率,同时带来巨大功耗,无法满足大数据时代下计算复杂性的需求。同时,上述缺陷也阻碍了深度学习神经网络的进一步发展。而借鉴人脑神经突触结构,构筑结构简单、低功耗、高低阻态连续可调的非易失性阻态忆阻器是实现类脑神经形态计算中至关重要的一步。

目前,模仿生物神经系统中突触间隙神经递质释放过程与电信号传递处理调控构建的多栅极人造神经元晶体管常表现出高低电阻态的突变。然而,基于二维材料的两端电阻开关器件通常表现出从高电阻状态到低电阻状态的突变。

为解决上述问题,中国科学院上海微系统与信息技术研究所研究员丁古巧课题组与深圳大学电子科学与技术学院副教授韩素婷、深圳大学高等研究院研究员周晔合作,利用新型碳基二维半导体材料C3N实现了可调突触行为的人工突触模拟忆阻器。该器件可以实现电阻值随着连续的电压扫描而逐渐变化的典型的忆阻行为。近常压X射线光电子能谱证实C3N薄膜中的质子传导过程实现了器件的忆阻特性。C3N中大量的晶格N原子使其成为高质量的质子接受材料。与此同时,在C3N与PVPy之间的氢键网络有助于质子传导。该忆阻器能实现多种生物突触中的突触可塑性模拟,包括兴奋性突触后电流、双脉冲易化、双脉冲抑制、双脉冲易化转换为双脉冲抑制以及强直后增强等。

该项工作表明,基于质子传导忆阻器的人工突触在进一步构建神经形态计算系统中具有巨大潜力。同时,该工作也是新型碳基二维半导体材料C3N应用研究的又一突破。相关工作以Tunable Synaptic Behavior Realized in C3N Composite based Memristor 为题,于《纳米能源》(Nano Energy)在线发表,第一作者为深圳大学电子科学与技术学院副研究员周黎和上海微系统所博士后杨思维。

该工作得到博士后创新人才支持计划(BX201700271),博士后面上项目(2017M621564),国家自然科学基金面上项目(11774368)、青年基金(11804353),上海科技成果转化项目(18511110600)的支持。(生物谷Bioon.com)

版权声明 本网站所有注明“来源:生物谷”或“来源:bioon”的文字、图片和音视频资料,版权均属于生物谷网站所有。非经授权,任何媒体、网站或个人不得转载,否则将追究法律责任。取得书面授权转载时,须注明“来源:生物谷”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

87%用户都在用生物谷APP 随时阅读、评论、分享交流 请扫描二维码下载->