打开APP

神奇研究用“磁铁”指引纳米颗粒 对抗动脉硬化!

  1. 动脉硬化
  2. 心脏病
  3. 心血管

来源:生物谷 2016-01-11 18:17

在工业化程度较高的一些国家,患动脉硬化的人特别多,动脉硬化会带来致命后果:动脉血管中出现的斑块沉积会导致中风和心脏病的发生。来自德国波恩大学的研究人员开发了一种新方法利用纳米颗粒引导新细胞靶向血管病变部位,从而对抗动脉硬化。科学家们证明在小鼠体内这些新细胞确实能够在病变部位发挥治疗效果,但在应用于人类疾病治疗之前仍然需要更多研究进行验证。
          

2016年1月11日讯 /生物谷BIOON/ --在工业化程度较高的一些国家,患动脉硬化的人特别多,动脉硬化会带来致命后果:动脉血管中出现的斑块沉积会导致中风和心脏病的发生。来自德国波恩大学的研究人员开发了一种新方法利用纳米颗粒引导新细胞靶向血管病变部位,从而对抗动脉硬化。科学家们证明在小鼠体内这些新细胞确实能够在病变部位发挥治疗效果,但在应用于人类疾病治疗之前仍然需要更多研究进行验证。
 
相关研究结果发表在国际学术期刊ACS NANO上。
 
在动脉硬化发生过程中,动脉血管内部会逐渐形成病理性沉积导致血管狭窄,而中风和心脏病就是血管狭窄导致血供不足造成的常见结果。沿血管分布的内皮细胞发生损伤通常是动脉硬化发生的一个重要内在因素,研究人员表示,内皮细胞能够产生一氧化氮,调节血管扩张以及血压,因此内皮细胞在动脉血管中发挥重要作用。他们开发的这项新技术就是通过基因改造的内皮细胞替换损伤的内皮细胞达到治疗目的。
 
研究人员首先利用病毒将负责产生eNOS酶的基因导入体外培养的内皮细胞中,这种酶能够刺激一氧化氮的合成,随后他们又将这种基因改造的细胞与含有铁核心的纳米颗粒结合在一起,研究人员解释道,纳米粒子的铁核心能够使内皮细胞带有磁性,他们还开发了一种特殊的环状磁铁,保证纳米颗粒能够引导装载了eNOS基因的内皮细胞到达血管病变部位执行修复功能。
 
他们在颈动脉内皮细胞发生损伤的小鼠体内注射了替换细胞,并通过磁铁引导替换细胞到达正确位点。随后研究人员移除了磁铁并检测了新鲜细胞是否获得了一氧化氮合成功能,结果表明这些新的内皮细胞能够产生一氧化氮刺激血管扩张,就像正常的动脉血管一样。
 
目前医生主要通过手术去除颈动脉的沉积物,有时还会放一个血管支架保证动脉狭窄部位能够进行正常的血液流通,但这些区域经常会再次发生堵塞。这项新技术从根本上解决了这一问题,对于动脉硬化治疗以及中风和心脏病的预防和治疗具有非常重要的意义。(生物谷Bioon.com)
 
本文系生物谷原创编译整理。欢迎转载!转载请注明来源并附原文链接。更多资讯请下载生物谷资讯APP。
 
 
Vascular Repair by Circumferential Cell Therapy Using Magnetic Nanoparticles and Tailored Magnets
 
Sarah Vosen, Sarah Rieck, Alexandra Heidsieck, Olga Mykhaylyk, Katrin Zimmermann, Wilhelm Bloch, Dietmar Eberbeck, Christian Plank, Bernhard Gleich, Alexander Pfeifer, Bernd K. Fleischmann, Daniela Wenzel
 
Cardiovascular disease is often caused by endothelial cell (EC) dysfunction and atherosclerotic plaque formation at predilection sites. Also surgical procedures of plaque removal cause irreversible damage to the EC layer, inducing impairment of vascular function and restenosis. In the current study we have examined a potentially curative approach by radially symmetric re-endothelialization of vessels after their mechanical denudation. For this purpose a combination of nanotechnology with gene and cell therapy was applied to site-specifically re-endothelialize and restore vascular function. We have used complexes of lentiviral vectors and magnetic nanoparticles (MNPs) to overexpress the vasoprotective gene endothelial nitric oxide synthase (eNOS) in ECs. The MNP-loaded and eNOS-overexpressing cells were magnetic, and by magnetic fields they could be positioned at the vascular wall in a radially symmetric fashion even under flow conditions. We demonstrate that the treated vessels displayed enhanced eNOS expression and activity. Moreover, isometric force measurements revealed that EC replacement with eNOS-overexpressing cells restored endothelial function after vascular injury in eNOS-/- mice ex and in vivo. Thus, the combination of MNP-based gene and cell therapy with custom-made magnetic fields enables circumferential re-endothelialization of vessels and improvement of vascular function.

版权声明 本网站所有注明“来源:生物谷”或“来源:bioon”的文字、图片和音视频资料,版权均属于生物谷网站所有。非经授权,任何媒体、网站或个人不得转载,否则将追究法律责任。取得书面授权转载时,须注明“来源:生物谷”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

87%用户都在用生物谷APP 随时阅读、评论、分享交流 请扫描二维码下载->