首页 » 标签:“重编程”(共找到约100条相关新闻)
  • 两篇Cell证实低热量饮食通过生物钟重编程阻止衰老

    图片来自Cell, doi:10.1016/j.cell.2017.07.0422017年8月14日/生物谷BIOON/---研究衰老如何影响生物钟控制代谢通路的科学家们发现低热量饮食(low-calorie diet, 也译作低卡路里饮食)有助让这些能量调节过程运转,并且有助让身体更加年轻。在一项新的研究中,美国加州大学尔湾分校表观遗传学与代谢中心主任Paolo Sassone-Corsi和同事

  • 生态中心等在体细胞重编程分子机制研究中取得突破

      近日,中国科学院生态环境研究中心与美国西奈山伊坎医学院的科学家们开展合作研究,在体细胞重编程的分子机制研究方面取得突破,发现转录因子Nac1参与调控体细胞重编程。这项研究发表在《干细胞报道》(Stem Cell Reports)上。多能性干细胞能够转化为体内的任何一种类型的细胞,典型的多能性干细胞包括胚胎干细胞(ESCs)和诱导多能干细胞(ipsCs)。胚胎干细胞分离自哺乳

  • 丁胜团队揭示如何对人类免疫细胞进行重编程

    由过度活跃或抑制免疫功能的细胞所引起的免疫系统失衡,往往会导致诸如牛皮癣或癌症等广泛疾病。通过调节控制某一类免疫细胞,即T细胞(T cells)的功能,研究人员可以帮助免疫系统恢复平衡,并进一步开发出新的治疗方法来对抗这些疾病。▲该研究的主要负责人之一丁胜教授(右)与主要第一作者Tao Xu博士(左)(图片来源:Gladstone Institutes)美国格拉斯通研究所(Gladstone In

  • Nature:清华大学科学家发现T细胞重编程新方法,有助治疗一系列免疫疾病

    图片来自NIAID。2017年8月4日/生物谷BIOON/---当免疫系统因过度活跃的细胞或抑制它的功能的细胞而失去平衡时,它导致一系列疾病,如牛皮癣和癌症等。通过操纵某些被称作T细胞的免疫细胞的功能,人们可能有助恢复免疫系统的平衡和开发出靶向这些疾病的新疗法。在一项新的研究中,来自中国清华大学、美国格拉斯通研究所、加州大学旧金山分校和Agios 制药公司的研究人员首次揭示出一种重编程特定T细胞的

  • 最新《自然》论文揭示如何对人类免疫系统细胞进行重编程

    2017 年 8 月 4 日: 由过度活跃或抑制免疫功能的细胞所引起的免疫系统失衡,往往会导致诸如牛皮癣或癌症等广泛疾病。通过调节控制某一类免疫细胞,即 T 细胞(T cells)的功能,研究人员可以帮助免疫系统恢复平衡,并进一步开发出新的治疗方法来对抗这些疾病。美国格拉斯通研究所(Gladstone Institutes)的研究人员 ,协同清华大学药学院,医学院和 Agios 制药的研究团队,首

  • Cell:重大突破!增强子重编程导致胰腺癌具有转移能力

    图片来自Cell期刊2017年8月3日/生物谷BIOON/---正如人那样,细胞也有记忆。它们从一开始出现之时就获得分子标志物来协助指导它们的产生。一项新的研究揭示出癌变的细胞可能利用这些早期的记忆促进它们转移,或者说扩散到体内较远的部位。这种转移是大多数癌症患者死亡的原因。这项研究提供强有力证据来支持对癌细胞转移的这种说法。它特别适用于一种最为常见的被称作胰腺导管腺癌(pancreatic du

  • The Plant Cell :解析茉莉酸调控植物免疫的转录重编程机理

      茉莉酸是来源于不饱和脂肪酸的植物免疫激素,其生物合成途径和化学结构与高等动物中的免疫激素前列腺素有极高的类似性。在受到机械伤害、咀嚼式昆虫和死体营养型病原菌的侵害时,植物激活茉莉酸信号通路,启动并级联放大茉莉酸介导的转录重编程,从而产生有效的防御反应。但目前对茉莉酸激活植物免疫转录重编程的机理所知甚少。中国科学院遗传与发育生物学研究所李传友研究组长期以番茄为模式植物,研究茉

  • Cell:揭示哺乳动物胚胎染色体3D结构重编程规律

    中科院北京基因组研究所刘江研究组和上海科技大学黄行许研究组合作,揭示了哺乳动物成熟精子和卵子的染色体3D结构以及在早期胚胎发育过程中染色体结构的重编程变化,相关成果于北京时间7月14日凌晨发表在国际期刊《细胞》(Cell)上。哺乳动物配子和早期胚胎的数量非常有限,因此研究首先团队解决了使用少量细胞建立3D染色体结构图谱的难题,获得了小鼠精子、卵子和早期胚胎的高分辨率染色体高级结构图谱。研究人员进一

  • Cell Stem cell:北京大学邓宏魁化学诱导重编程领域又一重大发现

    作为利用化学小分子诱导体细胞向可诱导多能干细胞重编程领域的著名学者,北京大学邓宏魁教授及其团队近期又建立了一套完整可靠的小分子重编程方法[1]。令人惊奇的是,在体细胞经化学小分子重编程为诱导多能干细胞的过程中,细胞会经历一种胚外内胚层样细胞(Extra-Embryonic Endoderm-like state, XEN-like state)中间状态[2],通过对这一中间状态细胞的详细

  • 生物谷专访深圳市医学基因重编程技术重点实验室黄卫人主任

    编者按:以CRISPR/Cas9为代表的基因编辑技术强力推动了整个生命科学研究领域的大跨步的前进。 可以预期首先在先天性遗传性疾病、单基因疾病的治疗方面,会迅速取得突破。为此,生物谷在即将召开2017 第四届基因编辑与临床应用研讨会之际专访了深圳市医学基因重编程技术重点实验室黄卫人主任。生物谷:黄博士您好,非常感谢您参加生物谷主办的2017基因编辑与临床应用研讨会,并接受生物谷的专访。 我们了解到