首页 » 标签:“遗传学”(共找到约100条相关新闻)
  • 强势来袭!第三届国际临床遗传学及遗传咨询培训课程火速报名啦!

    第三届国际临床遗传学及遗传咨询培训课程中国·北京2018年8月~2019年8月(面授2018年10月25-28日)主办单位协办单位苏州珀金埃尔默医学检验所有限公司随着分子遗传学和基因组学技术的快速发展,临床诊断对于遗传咨询的要求越来越高。我国在遗传咨询领域尚处于起步阶段,为了推动我国医学遗传咨询的体系建立,由北京协和医院、香港中文大学和美国贝勒医学院联合推出的国际临床遗传学及遗传咨询培训课程,借鉴

  • 突破!多项临床实验显示表观遗传学药物可有效治疗淋巴瘤!

    2018年4月10日讯 /生物谷BIOON /——根据即将在法国巴黎举行的2018年癌症靶向治疗国际会议(TAT 2018)中将展示的数据,一些靶向表观遗传学的新药物在淋巴瘤病人身上显示出了很好的效果。欧洲肿瘤学会(ESMO)的1期肿瘤学会议成为了BET抑制剂和EZH2抑制剂早期临床试验的专场。图片来源:Gabriel Caponetti, MD./Wikipedia/CC BY-SA 3.0An

  • 精神分裂症遗传学研究取得进展

    精神分裂症是一种病因未明的重性精神疾病,主要表现为感知觉、思维、情感和行为等多方面障碍以及精神活动不协调。大量研究表明,遗传因素在精神分裂症发生中具有重要作用(精神分裂症的遗传力高达0.8左右)。为了解析精神分裂症的遗传基础,全球范围内开展了大量大规模的全基因组范围内的关联研究(GWAS)。虽然GWAS鉴别到许多与精神分裂症显着相关的基因座(loci),但由于连锁不平衡及基因调控的复杂性,如何从G

  • Nature:利用光遗传学对酵母进行编程,导致更多的异丁醇产生

    2018年3月29日/生物谷BIOON/---在一项新的研究中,来自美国普林斯顿大学的研究人员开发出一种导致酵母产生更多的异丁醇的方法。异丁醇是一种可能用作生物燃料的候选物质。在他们发表在2018年3月29日的Nature期刊上的一篇标题为“Optogenetic regulation of engineered cellular metabolism for microbial chemical

  • 西雅图遗传学ADC药物enfortumab vedotin斩获FDA突破性药物资格

    小编推荐会议:2018新药研发东方论坛2018年03月27日/生物谷BIOON/--西雅图遗传学公司(Seattle Genetics)与合作伙伴安斯泰来(Astellas)近日联合宣布,美国食品和药物管理局(FDA)已授予实验性抗体药物偶联物(ADC)enfortumab vedotin治疗既往已接受检查点抑制剂(CPI)治疗的局部晚期或转移性尿路上皮癌(UC)的突破性药物资格(BTD)。BTD

  • 西雅图遗传学创新抗体药物偶联物(ADC)SGN-CD48A进入临床开发

     2018年03月08日讯 /生物谷BIOON/ --西雅图遗传学公司(Seathle Genetics)近日宣布启动评估抗癌药SGN-CD48A治疗复发性或难治性多发性骨髓瘤(MM)疗效和安全性的一项I期临床研究。SGN-CD48A是一种实验性抗体药物偶联物(ADC),靶向CD48蛋白,该蛋白在MM细胞表面呈高表达。SGN-CD48A采用了西雅图遗传学公司最新的ADC技术创新——新一代

  • Nat Neurosci:表观遗传学修饰保护老年人免患阿兹海默症

    2018年3月6日 讯 /生物谷BIOON/ --尽管一些遗传因素会提高患阿兹海默症的风险,但年龄是最主要的风险因素。然而,年龄是如何导致阿兹海默症发生的目前仍没有确切的解释。来自宾夕法尼亚大学的研究者们最近在《Nature Neuroscience》杂志上发表文章描述了阿兹海默症患者大脑中细胞内表观遗传学图谱的特征。他们发现,组蛋白表面的一类化学修饰会影响细胞核染色质的压缩(即组蛋白H4表面16

  • Nat Med:表观遗传学手段揭示阻止癌症恶化的新方法

    2018年2月13日 讯 /生物谷BIOON/ --最近,通过建立癌症恶化的表观遗传学模型,来自凯斯西储大学的研究者们首次成功地阻止了癌细胞在机体不同部位间的扩散。在最近发表在《Nature Medicine》杂志上的一篇文章中,研究者们利用新型的表观遗传学技术阻止了小鼠骨癌细胞向肺部的迁移。"目前有超过90%的癌症死亡病例是由于癌细胞的扩散引起的",该文章的高级作者,来自凯斯西储大学遗传学与基因

  • Science光遗传学重大突破!上转换纳米颗粒助力大脑深部刺激!或将颠覆神经疾病治疗!

    2018年2月10日讯 /生物谷BIOON /——你无法看到水井或者海水深处,因为光无法穿透这么深。尽管大脑并非无底洞,但是神经学家们在研究大脑深部结构时也面临着相同的问题,光无法穿透到大脑深部。这对光遗传学而言更是个问题,因为这种技术主要通过光操纵遗传标记的大脑细胞,在过去数十年间越来越流行。“光遗传学是实验室控制神经元的突破性工具,将来也有可能运用于临床。”日本理化研究所(RIKEN)脑科学研

  • Nature:科学家揭示“再生能力”背后的遗传学基础

     英国《自然》杂志近日发表了两篇基因学论文,欧洲两组团队分别报告了美西螈和真涡虫的基因组,揭示了神秘“再生能力”背后的遗传学基础。其中美西螈的320亿个碱基对,是目前组装出的最大基因组。美西螈全部肢体都可以再生,而真涡虫甚至可以在被切成碎块后,重新长出整个身体。研究人员一直都想彻底了解这其中的奥秘,弄清这种人类不具备的“再生能力”背后根本的遗传机制。此次,奥地利分子病理学研究所的科学家团