首页 » 标签:“遗传发育”(共找到约30条相关新闻)
  • 遗传发育所在细菌中实现植物泛素化途径的重建

    图:植物泛素化在细菌中的重建,以 ABI3 及其对应的 E3 泛素连接酶 AIP2 为例。a. 将编码 ABI3(底物),E1,AIP2(E3),E2 和 Ub(泛素单体)的基因构建到三个带有不同选择性标记的且相容的原核表达载体中;b. 利用不同的相应标签抗体对这五个蛋白在泛素化中的状态进行检测。泛素化是一种重要的真核生物蛋白质翻译后修饰方式,它决定了被修饰蛋白的命运。泛素化的过程分为三步系列的酶

  • 遗传发育所等鉴定大豆百粒重调控基因

    图:大豆百粒重基因鉴定。(A): 利用重测序群体定位的百粒重 QTL 位点。C:表明优势位点来源于栽培大豆 HN44;W:表明优势位点来源于野生大豆 ZYD7。PP2C- 1 在第 27 位氨基酸是 L(亮氨酸),37 位是 E(谷氨酸)。

  • 中科院遗传发育所等发现基础转录因子可以特异调控脂类代谢

     脂肪是生物体主要的能量储存形式,脂肪能量代谢与多种人类重大疾病(肥胖、糖尿病、癌症等)密切相关。细胞内的脂肪主要储存在脂滴(Lipid Droplet)中。脂滴的大小和动态调控与细胞的功能和代谢状态息息相关。

  • 遗传发育所在作物基因组单碱基编辑方法研究中取得进展

    单核苷酸点突变是作物许多重要农艺性状发生变异的遗传基础。单碱基的变异会导致氨基酸替换或蛋白质翻译终止,使基因功能发生改变,从而有可能产生优良的等位基因与优异性状。传统诱变及单碱基突变筛选技术(如TILLIN

  • Metabolomics:遗传发育所等发现2型糖尿病的重要早期生物标记物

    尽管2型糖尿病病人血浆中的中性脂组分变化已有较多报道,极性脂组分(磷脂和鞘脂类)的相关信息却非常缺乏。 为了系统地找到早期糖尿病病人的生物标记,中科院遗传与发育生物学研究所税光厚课题组系统分析了健康对照组和患不同程度的糖尿病病人血浆中300多种脂分子的含量。

  • PLoS Genetics:遗传发育所在神经特异性连接机制研究中取得新进展

    电突触介导的信号传递是神经细胞相互交流的一种基本方式,是脑感知、学习和记忆的基础,是神经网络构成的重要环节。然而,神经细胞是如何识别其正确目标神经并形成电突触的分子机理并不清楚。 中国科学院遗传与发育生物学研究所丁梅实验室以秀丽隐杆线虫为模式,发现BDU中间神经元和PLM机械感受神经元特异性地接触在一起,电镜及化学标记实验表明这二者通过电突触连接。

  • J. Neurosci.:遗传发育所脑肿瘤抑制因子调控突触发育研究获进展

    神经突触是神经元与其靶细胞之间进行信息交流的特化结构。突触生长过程的精确调控对于神经环路的形成和可塑性至关重要,突触发育和功能的异常导致多种神经精神疾病包括智力低下、自闭症、精神分裂症和神经变性病等。因此,寻找和鉴定突触发育和功能调控基因一直是神经生物学家的重要研究内容之一。

  • 遗传发育所生长素调控植物向光性分子机制研究获进展

    植物向光性是经典的植物生物学问题。以前的研究表明蓝光信号和生长素都是植物向光性反应所必需的,但是关于蓝光信号如何整合到生长素途径的分子机制还不清楚。中科院遗传与发育生物学研究所李传友研究组发现,光信号途径中的转录因子PIF4和PIF5是植物向光性反应的重要负调控因子。同时,PIF4和PIF5对生长素信号转导也起着负向调控作用。

  • 遗传发育所植物新着丝粒形成及表观遗传学研究获进展

    中科院遗传与发育生物学研究所韩方普实验室长期从事植物着丝粒的表观遗传学研究,曾在植物中首次发现着丝粒的失活现象(PNAS,2006),并初步分析失活的B染色体着丝粒具有不分离(nondisjunction)的功能(Plant Cell,2007a)。

  • PC:遗传发育所在植物先天免疫机制研究中取得新进展

    植物为了抵御病原菌的入侵,在长期的进化中,形成了十分复杂的免疫系统, 包括基础抗性和抗病基因介导的抗性两个层次。基础抗性属于第一层次的植物天然免疫,通常由植物表面的受体(PRRs)对病原相关分子模式(PAMPs)进行识别后引发,具有相对广谱、稳定和持久的特点。病原相关分子模式是许多病原菌普遍具有的,在进化上比较保守,如细菌鞭毛蛋白。而受体蛋白激酶FLS2可感受细菌鞭毛蛋白,激活植物先天免疫反应。