首页 » 标签 :“转录因子”(共找到约118条相关新闻)
  • Nature:研究揭示细胞转录因子新功能

    DNA的翻译,研究者揭示转录因子并不一定是扮演着开关的功能,而是抑制复合物的结合行为 任何一个旨在周末改善家庭工作的人都很清楚,要想干好一份工作,必须有合适正确的工具。对于细胞来说,这些正确的工具就是基因所编码的酶,正确的基因仅仅存在于所需要它们表达的细胞之中。

  • PLoS Biol:7个转录因子调控果蝇嗅觉系统

    如何创造出100亿多个细胞,而每个细胞的职责又都不同?人类的大脑可以自然而然做到这一点。瑞典Linkping大学的研究人员现在已经向解决这个谜题迈出了第一步。 神经科学助理教授Mattias Alenius说:“了解神经元多样化的机制,以及是如何让它们拥有多样性是必要的,以便在未来能培养神经细胞和更换神经细胞。他已将最新研究成果发表在本期PLoS Biology期刊上。

  • JCI:FoxO1转录因子或成糖尿病性心肌病治疗新靶标

    糖尿病性心肌病是指发生在糖尿病中,不能用高血压病、冠心病、心脏瓣膜病及其他心脏病来解释的心肌疾病。心肌壁内微血管病变、血管周边间质纤维化可能是产生糖尿病心肌病(Diabetic Cardiomyopathy)的原因。 该病在代谢紊乱及微血管病变之基础上引发心肌广泛灶性坏死,出现亚临床的心功能异常,最终进展为心力衰竭、心律失常及心源性休克,重症患者甚至猝死。

  • Nat Rev Gene:评论文章解析转录因子结合机理

    近日,国际著名杂志Nature Reviews Genetics在线刊登了一篇评论文章“Gene regulation: Resolving transcription factor binding”,文章中,作者解析了转录因子是如何进行结合的? 转录因子和DNA在活体内的结合是一个被高度调节的过程。

  • PCE:陈受宜等发现两个WRKY转录因子差异调控小麦耐逆性

    近日,国际著名杂志Plant,Cell & Environment在线刊登了中科院遗传与发育生物学研究所研究人员的最新研究成果“Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants,”,文章中...

  • Plant Physiol:吴慧兰等发现拟南芥耐镉的关键转录因子

    12月20日,中国科学院遗传与发育生物学研究所凌宏清实验室的副研究员吴慧兰博士在Plant physiology杂志上发表了他们最新研究成果"Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis enhanced cadmium tolerance via increased cadmium sequestration in

  • Nature:转录因子中氨基酸取代对基因调控的影响

    近日,nature杂志在线发表了耶鲁大学研究人员的研究成果,研究人员研究了转录因子中氨基酸取代对基因调控的影响。 基因组cis-调控区域中的变化在基因调控的演化中起重要作用。Lynch等人研究了转录因子中的氨基酸取代对基因调控的影响。他们发现了在演化过程中,“干系”胎生哺乳动物的转录因子CEBPB中的氨基酸取代是怎样重组关键磷酸化点的位置、从而改变它对cAMP/PKA信号作用的反应方式的。

  • Cancer Res:唐茜子等用新模型预测转录因子调控的基因

    近日,国际著名肿瘤学杂志Cancer Research发表了同济大学生命科学院刘小乐研究组关于核受体研究的最新成果“A Comprehensive View of Nuclear Receptor Cancer Cistromes”。该研究成果建立了一个新的模型预测转录因子直接调控的基因。 核受体是一类由配体激活的转录因子,在正常生理和如癌症的疾病中都扮演重要角色。

  • Nature:鉴别出一种新型转录因子

    日本京都大学的山中伸弥(Shinya Yamanaka)教授是iPS技术的一位重要创始人。2006年山中伸弥首次利用逆转录病毒将四种转录因子“Oct3/4, Sox2, c-Myc, Klf4”导入已分化完全的小鼠纤维母细胞中,将其重新编排变成全能性的类胚胎细胞,并将这些“返老还童”的重编排细胞命名为“诱导多能性干细胞”,即iPS细胞。

  • Adv. Funct. Mater.:蛋白质与果蝇转录因子结合制造纤维

    美国莱斯大学和德克萨斯农工大学研究人员通过基因嵌入融合技术,将不同蛋白质与一种来自果蝇的转录因子结合,再拉成纤细结实的线,就能织成任何想要的纹理构造。这种材料拥有多种潜在功能,可作为化学催化剂和生物传感器,在未来的组织工程领域前景广阔。最新论文发表在今天的《先进功能材料》网络版上。