首页 » 标签 :“甲基”(共找到约389条相关新闻)
  • RNF180/Septin9基因甲基化检测试剂盒(PCR荧光探针法)产品获批上市

    近日,国家药品监督管理局经审查,批准了博尔诚(北京)科技有限公司生产的创新产品“RNF180/Septin9基因甲基化检测试剂盒(PCR荧光探针法)”的注册。原 理为:Septin9 基因甲基化检测试剂盒(PCR 荧光探针法)包括 2 个步骤。第 1 步,先用血浆提取试剂盒(M5-02-001)从血浆中把游离的 DNA 提取出来后再用亚硫酸盐进行转化;第 2

  • 研究发现沉默转基因的激活不依赖于拷贝数和DNA过甲基化的变化

     转基因表达的稳定性在种苗商业化生产中具有重要作用,然而基因沉默现象影响着这种稳定性的产生与维持。中国科学院华南植物园区永祥团队长期致力于多基因定点叠加技术的研发以加快分子育种进程。要获得定点叠加的多基因材料并非易事,在烟草中的实验结果表明,其效率约为5%,可是在这些留下的材料中,却有1/3存在转基因沉默现象,无法正常使用(Hou et al.,

  • 研究揭示ALKBH1对非配对DNA 6mA去甲基化的结构基础

    DNA 6mA(N6-甲基腺苷)作为DNA的第二种修饰形式,是哺乳动物基因组表观遗传调控的重要组成。基因组6mA的水平在生物体内具有调节组织发育、性别比例、基因表达、X染色体失活等多种作用,阐明其调控机制是解码这一新型修饰碱基生物学功能的关键。2016年,耶鲁大学Andrew Xiao首次报道ALKBH1在真核生物中具有DNA 6mA去甲基化酶活性,而后一系

  • 研究揭示H3K27me3去甲基化酶KDM6家族调控人神经发生的关键作用

    中国科学院广州生物医药与健康研究院潘光锦课题组在《自然-通讯》(Nature Communications)上发表了题为JMJD3 and UTX determine fidelity and lineage specification of human neural progenitor cells 的研究论文。该研究发现H3K27me3去甲基化酶JMJD

  • 首个口服低甲基化制剂!大冢固定剂量片剂ASTX727(cedazuridine+地西他滨)获美国FDA优先审查!

    2020年02月13日讯 /生物谷BIOON/ --日本药企大冢制药(Otsuka Phamra)全资子公司Astex制药公司近日宣布,美国食品和药物管理局(FDA)已受理口服固定剂量组合抗癌药ASTX727(cedazuridine/decitabine[地西他滨],口服C-DEC)的新药申请(NDA)并授予了优先审查,该药用于先前未接受治疗的中危和高危骨

  • 研究发现H3K9甲基化酶SETDB1在多能性-全能性转换中的作用

     中国科学院广州生物医药与健康研究院陈捷凯课题组在Cell系列子刊Cell Reports上发表了题为SETDB1-mediated Cell Fate Transition Between 2C-like and Pluripotent States的研究论文。该研究首次发现H3K9甲基化酶SETDB1在全能性重编程中的作用,其敲除可促进多能性向

  • Nature Genetics: N6-甲基腺苷调节人体细胞RNA:DNA杂交的稳定性

     近日,英国诺丁汉大学等科研机构的研究人员在Nature Genetics上发表了题为“N6-methyladenosine regulates the stability of RNA:DNA hybrids in human cells”的文章,发现N6-甲基腺苷可以调节人体细胞RNA:DNA杂交的稳定性。R环结构(R-loop)是生物体中发现

  • Science子刊:我国科学家开发出针对ctDNA甲基化特征的机器学习算法来诊断结直肠癌

    在一项新的研究中,来自中国中山大学肿瘤防治中心、广州优泽生物技术有限公司、华中科技大学同济医学院、上海市第一人民医院、四川大学、第四军医大学和澳门科技大学的研究人员使用了一种针对癌症甲基化特征的机器学习算法来诊断结直肠癌。

  • 多篇研究成果聚焦甲基化研究领域新进展!

    本文中,小编整理了多篇重要研究成果,共同解读科学家们在甲基化研究领域取得的新进展,分享给大家!图片来源:Vossman/ Wikipedia【1】Nature:母体维生素C调节DNA甲基化重编程和生殖细胞产生doi:10.1038/s41586-019-1536-1发育通常被认为是在基因组中固定下来的,不过有几项证据表明它易受环境调节的影响,可能产生长期后果

  • Nat Commun:RNA的甲基化与去甲基化修饰

    德国慕尼黑的路德维希-马克西米利安大学(LMU)研究人员发现了细菌RNA中一种新型的化学修饰形式。显然,只有当细胞处于应激状态时,这种修饰才会附着在分子上,并且在恢复过程中会迅速去除。