打开APP

研究揭示大脑半球不对称性进化差异

近日,中国科学院自动化研究所脑网络组研究中心联合电子科技大学生命科学和技术学院利用脑网络组图谱的思想,绘制了灵长类大脑顶下小叶跨物种脑连接图谱,揭示出人类与非人灵长类顶下小叶不对称性的进化差异,为人类语言和工具使用的起源和演进提供了新线索,从而为阐明人类起源提供了新证据,相关研究成果发表在eLife上。达尔文的进化论认为人类的起源是由于自然选择驱动的生物进化

2021-07-13

The Plant Cell:普通小麦亚基因组非对称调控机制研究中取得进展

  普通小麦(Triticum aestivum L.)是经两次远缘杂交而形成的一种异源六倍体作物,含有A、B和D三个亚基因组。亚基因组分化对多倍体小麦基因组可塑性具有重要贡献,且成为其成功驯化的关键因素之一。然而,决定小麦亚基因组分化的时空特异性调控机制尚不清楚。中国科学院遗传与发育生物学研究所研究员薛勇彪研究组和中国科学院分子植物科学

2021-06-03

N-取代-α-氨基酸酯的不对称合成研究获进展

   N-取代-α-氨基酸及其衍生物是许多生物活性物质的关键结构单元,如多肽或模拟肽的N-甲基化衍生物往往具有更好的代谢稳定性、细胞膜通透性及口服生物利用度。然而,已报道的酶促不对称合成N-取代-α-氨基酸的方法存在只能合成(S)-构型产物、底物谱窄等问题。中国科学院天津工业生物技术研究所研究员朱敦明、吴洽庆带领的生物催化与绿色

2021-03-04

研究解析普通小麦亚基因组非对称调控机制

  近期,中国科学院分子植物科学卓越创新中心和中科院遗传与发育生物学研究所合作在The Plant Cell上,在线发表题为An atlas of wheat epigenetic regulatory elements reveals subgenome-divergence in the regulation of developme

2021-02-09

酶促不对称合成双手性中心γ-或δ-内酰胺研究获进展

手性内酰胺是药物和天然生物碱等生物活性化合物的重要骨架结构。目前,手性内酰胺主要通过基于C-C键生成的Michael反应和贵金属催化不对称氢化反应的化学方法进行合成,此类方法反应步骤较多、合成成本较高,难以大规模推广。利用亚胺还原酶或ω-转氨酶催化酮酯进行不对称胺化的酶促法生成γ-或δ-内酰胺的方法也被少量应用,但此方法只能形成一个手性中心,如何通过酶促法精

2020-11-22

科学家发现角蛋白在早期胚胎发育中的不对称分配与细胞谱系特化

 关于发育形成胎儿与胎盘的细胞谱系特化的具体机制,科学家们提出过几种不同的理论。“Inside-outside”模型认为细胞谱系的特化过程是由细胞分裂后所处的内-外位置产生的不同位置信号引发的。“异质性学说”(Heterogeneities model)认为在四细胞期阶段多能性细胞与滋养层细胞的细胞命运已经出现不同,在组蛋白修饰、转录因子动态变化、

2020-09-10

研究发现静息态额叶脑电不对称性与分裂型特质的不同维度有关

精神分裂症有阳性症状、阴性症状和认知功能缺损等常见症状,影响世界约1%的人口。在健康个体中也可以观察到患者的一些特征,但程度较轻,这些特征统称为分裂型人格特质。对分裂型人格特质展开研究是进一步了解这些症状的一种方法,其优点是研究结果不受患者中常见的药物、病程和住院经历等因素的干扰。静息态脑电记录个体在安静和放松状态的脑电信号,反映大脑内在和固有的活动模式,是

2020-08-16

酶促分子内不对称还原胺化构建手性1,4-二氮卓结构模块研究获进展

失眠是常见的一种睡眠障碍,在人群中发病率高。苏沃雷生是一类新型的催眠药,2014年获得美国FDA批准用于治疗难以入睡或维持睡眠的首个食欲素受体拮抗剂。但苏沃雷生的关键结构单元手性1,4-二氮卓环的高效合成仍具挑战性。中国科学院天津工业生物技术研究所研究员朱敦明、吴洽庆带领的生物催化与绿色化工团队,继利用亚胺还原酶催化不对称还原α, β-不饱和亚胺合成吗啡烷关

2020-08-07

Nat Cell Biol:新研究阐释不对称细胞分裂与衰老之间的关系

2019年10月2日 讯 /生物谷BIOON/ --最近,来自Seville大学(CABIMER)的研究人员发现了一种新的,可以用于解释解发生不对称细胞分裂的细胞的过早衰老的机制。这对于研究并预测与衰老相关的疾病(例如癌症和神经退行性疾病)的发展非常有用。该研究发表在最新一期的《Nature Cell Biology》杂志上。 在不对称分裂过程中,所得细胞具有不同的形态和大小,不同的细胞

2019-10-02

Nature:不对称溶酶体遗传预测造血干细胞的活化

2019年9月10日讯 /生物谷BIOON /——造血干细胞在整个生命周期中自我更新,并可以分化为所有的血液谱系,并能在移植后修复受损的血液系统。不对称细胞分裂以前被怀疑是造血干细胞命运的调节因子,但它的存在尚未被直接证实。在不对称细胞分裂中,未来子细胞的不对称命运是由与有丝分裂相关的机制所决定的。这可以通过细胞外部生态位信号的非对称遗传来调节,例如,定向的分区平面,或者细胞内部命运决定因素的非对

2019-09-10