打开APP

ACS Catalysis:“一锅酶法”制备氟苯尼考合成的直接手性中间体

来源:上海交大 2021-06-13 16:54

近日,国际知名期刊《ACS Catalysis》在线发表了生命科学技术学院林双君团队的研究成果“One-Pot Asymmetric Synthesis of an Aminodiol Intermediate of Florfenicol Using Engineered Transketolase and Transaminase”。林双君教授为通讯作者







近日,国际知名期刊《ACS Catalysis》在线发表了生命科学技术学院林双君团队的研究成果“One-Pot Asymmetric Synthesis of an Aminodiol Intermediate of Florfenicol Using Engineered Transketolase and Transaminase”。林双君教授为通讯作者,生命科学技术学院研究生刘琦为第一作者。

在对转酮酶和转氨酶催化机制和蛋白结构认识基础上,利用分子对接手段建立了酶-底物结合模型,并基于此设计半理性突变策略,翻转了转酮酶的立体选择性,转氨酶的对映体偏好性和醛酮选择性,进而偶联转酮酶和转氨酶突变体一锅法合成了末端羟基手性中间体(1R,2R)-对甲磺砜基苯丝氨醇,产率可以达到76%,非对映体选择性最高为96% de 和对映体选择性>99% ee,为氟苯尼考的制备提供了最直接的手性中间体。

基于设计,研究者从一系列转酮酶和转氨酶中筛选出能有效催化起始底物醛1的转酮酶突变体EcTK1和有效催化转酮酶产物2氨基化的ω-转氨酶ATA117。为了考察转酮酶的立体选择性,建立了一个通过非手性液相测定2立体构型的方法,即偶联一个对2基本无立体选择性的R-转氨酶突变体ATA117_AC,将(S)-和(R)-2分别转化成(1S,2R)-和(1R,2R)-3。从而可以确定EcTK1是S-选择性的,催化产生的羟酮中间体为S-构型(93.3% ee)(如图1所示)。由于所设计的路线是合成R-羟酮中间体,因此基于转酮酶的蛋白质结构和催化机制对该酶作了半理性改造。首先将底物醛1对接进EcTK1晶体结构的活性口袋中 (如图2A所示),发现醛羰基与H26和H261存在氢键相互作用,而F434位于醛羰基的背面。因此提出一个假设,如果通过氨基酸突变改变醛羰基的定位,那么很有可能会改变羟酮产物的立体构型。为了翻转醛羰基的朝向,采用了“破而后立”的策略,即先打破现有的氢键相互作用,而后建立新的氢键相互作用。通过迭代的饱和突变和理性突变,获得了立体选择性完全翻转的EcTK1_YYF和EcTK1_YYH突变体,ee(R)分别为91.6%和95.2% 。通过将突变体EcTK1_YYH与底物醛1进行分子对接,证实了醛羰基的朝向的确发生了翻转,与背面的Y434形成了新的氢键。(生物谷Bioon.com)

版权声明 本网站所有注明“来源:生物谷”或“来源:bioon”的文字、图片和音视频资料,版权均属于生物谷网站所有。非经授权,任何媒体、网站或个人不得转载,否则将追究法律责任。取得书面授权转载时,须注明“来源:生物谷”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

87%用户都在用生物谷APP 随时阅读、评论、分享交流 请扫描二维码下载->