新功能、新界面、新体验,扫描即可下载生物谷APP!
首页 » 生物研究 » MIT最新研究:从氨基酸链片段直接预测蛋白质功能

MIT最新研究:从氨基酸链片段直接预测蛋白质功能

来源:学术经纬 2019-03-27 12:27

 

就在几个月前,DeepMind推出了AlphaFold系统,这个被称为生物界“AlphaGo”的系统能够预测并生成蛋白质3D结构。而近日,来自MIT的研究人员开发了一个新的研究模型,能够直接预测氨基酸链片段是如何决定蛋白质功能的。这一发现可以帮助研究人员设计和测试新的蛋白质,从而用于药物研发和生物学研究。

我们都知道,蛋白质是维持我们生命所必需的庞大而复杂的物质。蛋白质具体能完成什么样的功能,主要取决于它独特的三维结构。因此了解蛋白质的结构,对于预测其对某些药物的反应来说,是一个非常重要的环节。

然而,尽管有了数十年的研究和多种成像技术的辅助,我们仍然只了解到了无数蛋白质结构中的很小一部分,还有很多未知结构的蛋白质功能尚未揭晓。针对这一情况,来自MIT的研究人员开发出了一种方法,“学习”了蛋白质序列中每个氨基酸位置上容易计算的表征。随后,研究人员将这些表征输入机器学习模型,让模型直接预测单个氨基酸片段的功能,而无需任何蛋白质结构的数据。

首先,研究人员使用了来自蛋白质结构分类数据库(SCOP)的约22000种蛋白质,将这些蛋白质按照结构和氨基酸序列的相似性进行分类,并对机器学习模型进行训练。对于每一对蛋白质,研究人员都会根据其SCOP类别计算出一个结构相似性评分。然后,研究人员将随机的蛋白质结构对及其氨基酸序列输入机器学习模型,通过编码器将它们转换成数值表示出来,称为嵌入(embedding)。每个嵌入都包含了一对氨基酸序列的相似性信息。

该模型将两个嵌入对齐,然后计算出相似度评分,以预测其代表的蛋白质三维结构的相似性。然后,计算机会将这一评分与真实的SCOP相似性评分进行比较,并向编码器发送反馈信号。如果模型的预测分数与真实分数相差较远,则会进行一定的调整。

同时,该模型预测了每次嵌入的“接触图”(contact map),即每个氨基酸与该蛋白质中其他氨基酸的距离,并将其预测的接触图与来自SCOP的已知接触图进行比较,然后向编码器发送反馈信号。这一步骤有助于模型更好地明确氨基酸在蛋白质结构中的确切位置,从而进一步了解每个氨基酸的功能。

对于某个氨基酸链,该模型可以为三维结构中的每个氨基酸位置生成一个嵌入。然后,机器学习模型可以使用这些序列嵌入,根据其预测的三维结构接触图,来准确预测每个氨基酸的功能。在一个应用实例中,研究人员使用该模型预测有哪些蛋白质可以通过细胞膜,其预测结果比现有的先进模型还要更加准确。

接下来,研究人员计划将该模型应用到更多的预测任务中,例如弄清楚哪些序列片段可以与小分子结合,这对于药物研发工作来说是至关重要的。研究人员表示,这项研究最终将可以应用于人类健康和药物基因组学,因为它有助于检测破坏蛋白质结构的有害突变。(生物谷Bioon.com)

温馨提示:87%用户都在生物谷APP上阅读,扫描立刻下载! 天天精彩!


相关标签

最新会议 培训班 期刊库