新功能、新界面、新体验,扫描即可下载生物谷APP!
首页 » 生物研究 » elife:机器学习揭示蛋白质的功能

elife:机器学习揭示蛋白质的功能

来源:本站原创 2019-03-13 15:21

2019年3月13日 讯 /生物谷BIOON/ --今天在开放获取期刊eLife中描述了一种能够读取和分析蛋白质序列的新型机器学习模式。

该研究表明,当训练读取序列数据时,称为限制玻尔兹曼机器(RBM)的人工神经网络可以提供有关蛋白质结构,功能和进化特征的大量信息。它被认为是第一种可以仅从序列数据中提取这种细节水平的方法。


(图片来源:www.pixabay.com)

蛋白质由称为氨基酸的分子序列形成,其决定了给定蛋白质的结构和功能特性。但要了解序列的哪些部分负责哪些属性具有挑战性。 “回答这个问题可能会对药物开发产生重大影响,”共同作者JérômeTubiana解释说,他是法国巴黎高等师范学院(ENS)物理实验室的博士生。 “例如,它可以帮助设计具有所需功能的新蛋白质,或预测未来生物体中蛋白质的序列进化,如病原体,并确定适当的药物靶标。”

为了探索这个问题,Tubiana和他的合作者将RBM应用于20个蛋白质“家族” - 一组具有共同进化起源的蛋白质。研究人员提出了四个蛋白质家族的详细结果,包括两个名为Kunitz和WW的短蛋白质结构域,一个称为Hsp70的长蛋白质蛋白质,以及用于基准测试的合成晶格蛋白质。

他们发现,在学习之后,RBM中人工神经元之间的联系是可解释的,并且与蛋白质的结构,功能(如活动)或系统发育 - 蛋白质序列之间的进化关系有关。此外,该团队发现他们可以使用RBM通过随意组合和调高或调低不同的人工神经元来设计新的蛋白质序列。

“我们的RBM模型展示了机器学习技术如何解决复杂的数据识别,并以可解释的方式从数据中得出结论,”共同作者,ENS物理实验室CNRS研究主任Simona Cocco说。(生物谷Bioon.com)

资讯出处:Machine-learning model provides detailed insight on proteins

原始出处:Jérôme Tubiana, Simona Cocco, Rémi Monasson. Learning protein constitutive motifs from sequence data. eLife, 2019; 8 DOI: 10.7554/eLife.39397

版权声明:本文系生物谷原创编译整理,未经本网站授权不得转载和使用。如需获取授权,请点击
温馨提示:87%用户都在生物谷APP上阅读,扫描立刻下载! 天天精彩!


相关标签

最新会议 培训班 期刊库