新功能、新界面、新体验,扫描即可下载生物谷APP!
首页 » 干细胞&iPS » 2018年9月Science期刊不得不看的亮点研究

2018年9月Science期刊不得不看的亮点研究

来源:本站原创 2018-09-30 23:45

2018年9月30日/生物谷BIOON/---2018年9月份即将结束了,9月份Science期刊又有哪些亮点研究值得学习呢?小编对此进行了整理,与各位分享。

1.Science:重大进展!鉴定出有害藻花产生强效神经毒素软骨藻酸的基因簇
doi:10.1126/science.aau0382; doi:10.1126/science.aau9067


在一项新的持续了5年的研究中,来自美国加州大学圣地亚哥分校、克雷格文特尔研究所(J. Craig Venter Institute, JCVI)、莫斯兰丁海洋实验室、南加州大学、加拿大达尔豪斯大学和捷克南波西米亚大学的研究人员发现了产生软骨藻酸(domoic acid)的遗传基础 ,其中软骨藻酸是一种由有害藻类大量繁殖产生的强效神经毒素。相关研究结果发表在2018年9月28日的Science期刊上,论文标题为“Biosynthesis of the neurotoxin domoic acid in a bloom-forming diatom”。
软骨藻酸(domoic acid)化学结构式。

有害的藻类大量繁殖(algal bloom, 也称有害藻类水华,有害藻华)会对世界各地的沿海地区造成重大的经济和环境破坏。这些藻华偶尔产生的毒素能够让海洋哺乳动物患病,并且当这些毒素在海鲜中聚集时会危机人体健康。接触高剂量的软骨藻酸---由一种属于拟菱 形藻(Pseudo-nitzschia)的硅藻类浮游植物产生---可导致记忆丧失性贝类中毒,这是一种以癫痫发作和短期记忆丧失为特征的潜在致命性疾病。

在这项新的研究中,这些研究人员鉴定出海洋浮游植物拟菱形藻中的与软骨藻酸产生相关的一个基因簇。

在Allen实验室开展研究工作的JCVI研究人员从这种微藻中提取出RNA转录本并进行测序,这种方法能够测量有活性的基因。随后对由RNA转录物编码的遗传序列的分析鉴定出据推测产生这种毒素的基因。在Moore实验室中开展的体外生物化学实验随后确定了一系列产生这 种毒素核心结构的酶。

论文共同第一作者、克里普斯海洋学研究所海洋生物技术与生物医学中心博士后研究员Shaun McKinnie说,“合成软骨藻酸的一些生物合成酶在遗传水平和生化水平上是独一无二的。鉴于我们能够将这些诊断性的化学转换与它们的酶和基因相关联在一起,我们希望科学 家们能够开始预测有害藻华中的软骨藻酸毒性潜力,从而作为当前的监测方法的补充。”

2.Science:重磅!鉴定出一种导致休眠的癌细胞重新唤醒和转移的新途径
doi:10.1126/science.aao4227; doi:10.1126/science.aav0191


在一项新的研究中,来自美国冷泉港实验室(CSHL)的研究人员确定了缓解中的癌症反弹回来的途径之一。这些知识促进了一种旨在阻止癌症复发和转移的新型治疗理念。即使在成功的癌症治疗之后,之前从原始肿瘤中脱离下来的休眠的非分裂癌细胞可能仍然存在于身 体的其他地方。如果被唤醒,这些癌细胞能够增殖并生长成转移性肿瘤。这些研究肺转移的研究人员如今鉴定出伴随着炎症的能够唤醒休眠的癌细胞的信号。相关研究结果发表在2018年9月28日的Science期刊上,论文标题为“Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice”。

炎症是否能够直接导致癌症复发,如果确实如此的话,人们仍然不清楚它是如何导致的。在这项新的研究中,这些研究人员证实持续的肺部炎症,包括由烟草烟雾暴露引起的炎症,能够唤醒已扩散到肺部的休眠的乳腺癌细胞和前列腺癌细胞并让它们开始发生分裂。这些 癌细胞如今能够在肺部中形成转移性肿瘤。对大多数常见的癌症而言,肿瘤转移导致大部分的癌症死亡病例。

冷泉港实验室副教授Mikala Egeblad及其团队证实通过将小鼠暴露于烟草烟雾中或一种被称为内毒素的细菌成分引起的持续性肺部炎症诱发常见的被称作中性粒细胞的白细胞以一种特殊的方式唤醒附近的休眠的癌细胞。

我们通常依靠杀死细菌和酵母等入侵者的中性粒细胞有几种方法来消灭这些入侵者。一种方法是将它们的DNA排出细胞膜外面的空间。这种被排出的DNA装饰着毒性的酶,并形成一种薄薄的被称作中性粒细胞胞外陷阱(neutrophil extracellular trap, NET)的网状陷阱 ,从而能够杀死病原体。

这项新的研究表明持续性的肺部炎症导致休眠的癌细胞周围的区域形成NET。NET中的两种酶---中性粒细胞弹性蛋白酶(neutrophil elastase, NE)和基质金属蛋白酶9(matrix metalloproteinase 9, MMP9)---与组织中的一种被称为层粘连蛋白(laminin)的蛋白相互 作用。先是NE,随后是MMP9依次地切割层粘连蛋白。这改变了这种蛋白的形状,从而暴露出一种被称为表位(epitope)的新表面。

当被附近的休眠的癌细胞识别时,这种表位触发唤醒这些癌细胞的信号产生。Egeblad说,“这些休眠的癌细胞识别层粘连蛋白的新形状,它们说,'我们应当再次开始生长'。”

Egeblad团队构建出一种抗体来阻断这种在层粘连蛋白上暴露出来的表位。在小鼠中,这阻止了附近的休眠癌细胞重新唤醒。已开始优化这种抗体并将它与其他的干扰NET的方法进行比较。他们希望最终在人体中开展临床试验。

3.Science:重大进展!构建出增加基因组靶向范围的CRISPR/Cas9系统
doi:10.1126/science.aas9129


在CRISPR/Cas9系统中,酶Cas9在DNA靶位点上进行切割,其中这种靶位点是这样确定的:一种被称作CRISPR RNA(crRNA)的RNA分子利用它的一部分序列与另一种被称作tracrRNA的RNA分子通过碱基配对结合在一起,形成嵌合RNA(tracrRNA/crRNA),然后,借助crRNA的另一部分序列与靶DNA位点进行碱基配对,以这种方式,这种嵌合RNA就能够引导Cas9结合到这个靶位点上并进行切割。在实际应用时,人们可以将tracrRNA和crRNA作为两种向导RNA(gRNA)或者融合在一起形成单向导RNA(single guide RNA, sgRNA),并被用来引导酶Cas9结合到靶DNA序列上并进行切割,其中Cas9与sgRNA一起被称作Cas9-sgRNA系统。
图片来自Frontiers in Genetics, 24 September 2015, doi:10.3389/fgene.2015.00300。

此外,CRISPR/Cas9系统靶向识别和切割与前间隔序列邻近基序(protospacer adjacent motif, PAM)相邻的特定DNA位点。作为一种最为频繁用于基因组编辑的Cas9酶,来自酿脓链球菌(Streptococcus pyogenes)的Cas9(SpCas9)仅识别作为PAM的NGG序列(简称NGG PAM,其中N代表任何一种碱基),这就限制了基因组中能够被靶向的区域。

在一项新的研究中,为了解决这个限制,来自日本东京大学、庆应义塾大学、大阪大学和美国布罗德研究所、麦戈文脑研究所和麻省理工学院的研究人员构建出一种合理设计的SpCas9变异体(SpCas9-NG),它能够识别NG而不是NGG。这种SpCas9-NG变异体增加了基因组中的靶向范围,但是具有与野生型SpCas9类似的特异性。晶体结构揭示出与第三个碱基之间的碱基特异性相互作用的丧失得到新引人的非碱基特异性相互作用的补偿,从而能够识别作为PAM 的NG序列(NG PAM)。

这些研究人员进一步证实在人细胞中,这种SpCas9-NG变异体在携带着NG PAM的内源性靶位点中诱导碱基插入或删除(insertion or deletion, indel)。

最后,这些研究人员还发现将这种SpCas9-NG变异体与活化诱导的胞苷脱氨酶(activation-induced cytidine deaminase, AID)融合在一起能够调节人细胞中携带着NG PAM的靶位点上的C→T转化,即由碱基胞嘧啶(C)转化为碱基胸腺嘧啶(T)。

4.Science:重磅!你的直觉可能就是你的第六感!新研究发现肠道和大脑通过迷走神经直接连接在一起
doi:10.1126/science.aat5236; doi:10.1126/science.aau9973


人体肠道上排列着1亿多个神经元---它实际上就是一个大脑。确实,肠道实际上与大脑之间存在着交谈。之前的研究已发现涉及消化系统和中枢神经系统之间信号传递的肠道-大脑连接(gut-brain connection)是以激素转运为基础的,这种基于激素的信号传递大约需要10分钟。但是,在一项新的研究中,来自美国杜克大学的研究人员指出肠道与中枢神经系统之间可能存在着更加直接的连接---迷走神经(vagus nerve)。相关研究结果发表在2018年9月21日的Science期刊上,论文标题为“A gut-brain neural circuit for nutrient sensory transduction”。论文通信作者为杜克大学医学院医学助理教授Diego Bohórquez。

基于一项发现肠道细胞具有突触的早前研究(Journal of Clinical Investigation, doi:10.1172/JCI78361),这些研究人员将一种表达绿色荧光蛋白的狂犬病病毒注射到小鼠的胃部中,并观察到它从肠道快速地传播到这些小鼠的脑干中。

当将来自迷走神经的神经元与感觉肠道细胞(sensory gut cell)一起培养时,这些神经元在培养皿中移动并与这些感觉肠道细胞形成突触,从而开始与它们电偶联在一起。这些感觉肠道细胞甚至分泌谷氨酸,而这些神经元在100微秒内就会摄取所分泌的谷氨酸,这一速度比眨眼还要快。向培养皿中添加糖会加快这些神经元和这些感觉肠道细胞之间的信号传递速度,这一发现提示着作为一种参与味道和气味感知的神经递质,谷氨酸可能是这一过程的关键。阻断这些肠道细胞中的谷氨酸分泌会使得这些信号传递嘎然而止。

5.Science:重磅!将人干细胞植入到人造小鼠卵巢中产生人卵子前体细胞
doi:10.1126/science.aat1674


在一项新的研究中,来自日本多家研究机构的研究人员利用人类干细胞成功地在人工小鼠卵巢内部产生了人卵原细胞(oogonia)。相关研究结果于2018年9月20日在线发表在Science期刊上,论文标题为“Generation of human oogonia from induced pluripotent stem cells in vitro”。在这篇论文中,他们描述了他们的研究和未来的计划。

作为生殖研究的一部分,科学家们一直在努力实现利用干细胞制造人类卵子的目标--做到这一点将让那些不能自然产生卵子的女性以另一种方式制造它们。但是实现这一目标一直是一条艰难的道路。研究人员面临着道德和生物挑战。但是,尽管存在这些困难,过去的研究工作已表明,利用干细胞制造小鼠卵子并用小鼠精子加以受精是有可能实现的。这项新研究取得的成功表明着在人类中做同样的事情也是可能的,不过到目前为止,还没有人能够圆满完成。在这项新的研究中,这些研究人员取得了一项里程碑突破:利用植入到非常类似于小鼠卵巢的人工小鼠卵巢中的人类干细胞制造出人类卵子的前体细胞。

这些研究人员报道,他们的工作始于利用经过验证的技术将人血细胞转化为诱导性多能干细胞(iPS细胞)。接下来,他们使用胚胎细胞构建出了非常类似于小鼠卵巢的人工小鼠卵巢。之后,他们将这些iPS细胞植入到人工小鼠卵巢中,让它们孵育数月。他们报道,最终,这些iPS细胞生长成处于不同生长阶段的具有卵母细胞特异性特征的物质,即人卵子的前体细胞。他们还报道,他们计划继续开展他们的研究,希望将他们的卵原细胞发育成卵子。他们还有计划涉及做同样的事情以便制造出精子。

6.Science:重磅!揭示T细胞命运决定机制
doi:10.1126/science.aao2933


在免疫反应期间,许多免疫细胞经历成熟而变成功能增强的细胞,从而使得它们能够以特定方式对特定类型的病原体作出反应。这被称为“效应细胞分化(effector cell differentiation)”。对一种称为滤泡辅助性T细胞(T follicular helper cell, Tfh)的免疫细 胞而言,了解这种效应细胞分化机制可能是产生更好疫苗、帮助临床医生抵抗难以消灭的病毒、细菌或多细胞病原体和理解如何抑制自身免疫疾病的关键。

在一项新的研究中,来自美国阿拉巴马大学伯明翰分校、哈森阿尔法生物技术研究所、麻省总医院、哈佛医学院和辛辛那提儿童医院的研究人员详细介绍了一种为产生两种主要的效应细胞亚群--- Tfh细胞和非Tfh细胞---的命运决定作好准备的机制。相关研究结果发表在 2018年9月14日的Science期刊上,论文标题为“Differential IL-2 expression defines developmental fates of follicular versus nonfollicular helper T cells”。

这两种类型的细胞均由在淋巴结中表达表面标志物CD4的初始T细胞(naïve T cell)发育而来。当激活信号指出体内其他部位遭受感染时,这些初始T细胞经诱导后发育成Tfh细胞或三种类型的非Tfh细胞---Th1、Th2或Th17细胞---之一。

在效应细胞分化的早期事件期间,已知一部分活化的CD4+ T细胞开始产生细胞信号转导因子IL-2。但是科学家们没有任何标志物来区分哪些活化的CD4+ T细胞产生IL-2,而且也无法区分哪些活化的CD4+ T细胞会变成Tfh细胞,哪些活化的CD4+ T细胞会变成非Tfh细胞。

当阿拉巴马大学伯明翰分校Casey Weaver实验室的研究成员对IL-2报告小鼠进行基因改造时,情形发生了变化。这些小鼠具有一个与IL-2基因连接在一起的绿色荧光蛋白(GFP)编码基因。一旦活化的CD4+ T细胞开始产生IL-2,那么当暴露于蓝光时,它们就会发生绿光。 这允许将产生IL-2的CD4+ T细胞和不产生IL-2的CD4+ T细胞自动分选为两组不同的细胞群体。在这些报告小鼠发育成熟之前,Tfh和非Tfh细胞能够在遭受激活化仅两到三天后就可加以区分。

通过这些报告小鼠,论文共同第一作者、阿拉巴马大学伯明翰分校博士后研究员Colleen Winstead 博士和论文共同第一作者、阿拉巴马大学伯明翰分校医学科学家教育项目博士生Daniel DiToro就能够区分产生IL-2的CD4+ T细胞和不产生IL-2的CD4+ T细胞,并在遭受活 化后数小时内对它们进行分选。

对每组经过分选的CD4+ T细胞进行测试表明它们诱导一系列不同的基因表达。产生IL-2的CD4+ T细胞诱导已知在Tfh细胞发育和功能中发挥重要作用的基因表达。相反,不产生IL-2的CD4+ T细胞诱导非Tfh效应细胞分化特征性的基因表达。这提示着产生IL-2的CD4+ T细胞 命中注定变成Tfh细胞,不产生IL-2的CD4+ T细胞命中注定变成非Tfh效应细胞。即使在经过活化的T细胞开始细胞分裂开始之前,这种命运决定似乎在数小时内就被确定。

7.Science:重磅!发现一种新的细胞内蛋白运送途径----ER-SURF
doi:10.1126/science.aar8174


在一项新的研究中,来自德国凯泽斯劳滕大学、以色列魏茨曼科学研究所和瑞士巴塞尔大学的研究人员发现新合成的蛋白到达细胞中各自靶区室的一种新机制。旨在运送到线粒体中的蛋白并不会被直接运送到线粒体中,而是先被引导到内质网的表面上,在那里,它们沿 着内质网的表面“冲浪”。这种机制让新合成的蛋白保持运送能力,并且可能阻止它们聚集在一起。蛋白聚集可能是导致阿尔茨海默病和帕金森病等人类疾病的关键问题。相关研究结果发表在2018年9月14日的Science期刊上,论文标题为“An ER surface retrieval pathway safeguards the import of mitochondrial membrane proteins in yeast”。论文通信作者为凯泽斯劳滕大学线粒体生物学专家Johannes Herrmann教授和魏茨曼科学研究所的Maya Schuldiner。

Herrmann团队与Schuldiner密切合作,观察到线粒体蛋白最初被靶向引导到内质网的表面上。内质网是一种细胞内室,起着将蛋白运送到各种细胞结构中的中央分选站的作用。内质网起着缓冲系统的作用。Herrmann解释道,“新合成的蛋白质通常易于错误折叠和聚集。 它们被结合到内质网表面上并被储存在那里,直到它们被传递到线粒体上。因此,ER-SURF将蛋白维持在一种保持运送能力的构象中,并阻止它们聚集。这样的蛋白聚集物对细胞是有害的,并被认为是许多疾病发展的基础。”

8.Science:新型生物传感器在15分钟内定量检测一滴血中的代谢物浓度
doi:10.1126/science.aat7992


在一项新的研究中,来自德国马克斯-普朗克医学研究所、海德堡大学儿童医院、瑞士洛桑联邦理工学院和洛桑大学医院的研究人员开发出一种新型生物传感器,它能够利用一滴血准确地定量测试代谢物浓度。这种方法的准确性和简单性可能让它成为一种诊断和监测多种 疾病的首选工具。相关研究结果发表在2018年9月14日的Science期刊上,论文标题为“Semisynthetic sensor proteins enable metabolic assays at the point of care”。论文通信作者为马克斯-普朗克医学研究所的Kai Johnsson教授。

论文第一作者、马克斯-普朗克医学研究所化学生物学系研究员Qiuliyang Yu说,“我们介绍了一种通过血液分析测量代谢物的全新机制。我们开发出一种新的分子工具,而不是将现有技术小型化。”这种分子工具是一种发光蛋白,它在还原的辅因子烟酰胺腺嘌呤二核苷 酸磷酸(nicotinamide adenine dinucleotide phosphate, 缩写为NADPH)的存在下会改变颜色。NADPH分子能够在对感兴趣的代谢物特异性的酶催化反应中产生,这意味着能够通过分析发出的光的颜色来确定代谢物浓度。通过使用不同的酶催化反应,这种新型的生物传 感器就能够对苯丙氨酸、谷氨酸和葡萄糖等各种代谢物进行定量测定。

事实上,这种方法是非常简单的。就苯丙氨酸而言,通过无痛手指刺破从患者身上取出一滴血。然后将一部分血液样品加入反应缓冲液中并且将它添加到含有这种生物传感器的试条上。当苯丙氨酸被消耗和NADPH产生时,这种生物传感器发出的光会呈现出从蓝色变为红色 的颜色变化---这种变化可通过日常的数码相机或智能手机加以检测。随后这种颜色变化就被用来计算苯丙氨酸浓度。

这种方法的整个过程仅需10到15分钟,能够做到即时测试(POCT),而且所需的血液量仅为0.5μl。它是如此简单和准确以至于患者最终应当能够自我测试,这是科学家正在追求的目标。Yu总结道,“我们如今正在寻找进一步自动化和简化这种测试的方法。”

9.Science:新研究挑战分子生物学中心法则!核糖核苷酸的整合竟促进NHEJ途径介导的DNA双链断裂修复
doi:10.1126/science.aat2477; doi:10.1126/science.aau9194


据预测,在人体中,在每个细胞周期中,每个细胞可能发生着50次内源性DNA双链断裂(double-strand break, DSB)。非同源末端连接(Non-homologous End Joining, NHEJ)和同源重组(Homologous Recombination, HR)成为人细胞中的DSB修复的两种主要模式。尽 管当姐妹染色单体可用时,同源重组在S/G2后期的DSB修复中占主导地位,但是NHEJ在修复DSB时不需要模板DNA,在G1期以及S期早期发挥着重要的作用。未被修复的DSB在细胞分裂期间能够导致基因丧失,并导致染色体转位、突变率增加和癌变。在免疫多样性的产生过程 中,NHEJ也在V(D)J重组和类别转换重组(class switch recombination)中导致程序性DSB。

同源重组以完全相同的染色体作为模板执行精确的修复,因而仅发生在DNA经历或完成复制的S和G2期。NHEJ可在整个细胞周期发生,因为这种修复模式不需要模板,仅基于DSB的结构而容易产生错误。哺乳动物细胞中的DSB主要通过NHEJ加以修复。

NHEJ涉及多蛋白复合物介导的一系列步骤,这些步骤主要包括:联会(synapsis)、末端加工和连接。当发生DNA双链断裂时,环形的Ku70/Ku80二聚体在断裂的DNA末端上形成,DNA依赖性蛋白激酶催化亚基(DNA-PKcs)通过Ku70/Ku80二聚体介导联会复合物的形成,接着 核酸酶加工位于DNA断裂末端的突出端(overhang)。经末端加工后,DNA连接酶IV(LigIV)经招募后与XRCC4形成复合物用于连接DNA断裂末端,其中在这种复合物中,XLF/Cernunnos的存在会增加LigIV的活性。简言之,NHEJ通过将断裂的染色体末端连接在一起来保持基 因组稳定性。此外,人们认为DNA基因组损伤通常被认为是用DNA进行修复的。
图片来自Leejunga9126/wikipedia。

在一项新的研究中,来自美国北卡罗来纳大学的研究人员吃惊地发现在DSB修复期间,核糖核苷酸通常通过哺乳动物NHEJ途径被整合到断裂的DNA末端上,从而增强DSB修复。这一重要的发现证实了将核糖核苷酸短暂地整合到DNA中具有生物学功能,从而挑战了分子生物学 的中心法则。相关研究结果发表在2018年9月14日的Science期刊上,论文标题为“Ribonucleotide incorporation enables repair of chromosome breaks by nonhomologous end joining”。

这些研究人员证实在多种情形---包括V(D)J 重组和Cas9诱导的染色体断裂---下,两种“DNA”聚合酶是NHEJ特异性的,在通过NHEJ 途径进行的DSB修复中偏好地将RNA加入到细胞基因组中。这些RNA的加入有效地促进至为重要的连接步骤发生,随后会被DNA片段替换,从 而这个NHEJ修复过程,然而脱氧核苷酸的加入不会有效地促进连接步骤发生。DSB修复动力学特征表明DNA的第一条链发生核糖核苷酸依赖性连接,接着第一条链的互补链利用脱氧核苷酸加以修复,随后插入到第一条链中的核糖核苷酸被脱氧核苷酸替换掉。这些结果表明 多达65%的细胞NHEJ修复产物具有短暂插入的核糖核苷酸,这促进了DSB修复的灵活性,为此付出的代价是形成更加脆弱的中间产物。

10.重磅!两篇Science首次发现阻断CRISPR/Cas12a的抗CRISPR蛋白
doi:10.1126/science.aau5138; doi:10.1126/science.aau5174


在两项新的研究中,两个研究团队利用生物信息学方法鉴定出阻断Cas12a的抑制蛋白。尽管过去的研究已鉴定出几种阻断Cas9的抑制剂,但是这些抑制Cas12a的蛋白是迄今为止已知的首批阻断Cas12a的蛋白。相关研究结果于2018年9月6日在线发表在Science期刊上,论文标题分别为“Systematic discovery of natural CRISPR-Cas12a inhibitors”和“Discovery of widespread Type I and Type V CRISPR-Cas inhibitors”。

在第一项新的研究中,来自美国加州大学伯克利分校的研究人员利用一种全面的生物学信息学和实验筛选方法鉴定出三种阻断或减少在人细胞中进行CRISPR/Cas12a介导的基因组编辑的抑制剂。他们还发现CRISPR自我靶向和抑制剂出现率在原核生物基因组中存在广泛的关联性,这提示着一种从微生物世界中发现更多的Acr蛋白的直接途径。

在第二项新的研究中,来自美国加州大学旧金山分校、麻省总医院和哈佛医学院的研究人员发现了12个Acr基因,这些基因编码的Acr蛋白包括抑制V-A型CRISPR/Cas系统和I-C型CRISPR/Cas系统的蛋白,如AcrVA1。

值得注意的是,当在人细胞中进行测试时,AcrVA1最为有效地抑制Cas12a的一系列直向同源物,包括MbCas12a、Mb3Cas12a、AsCas12a和LbCas12a。这项研究发现的这12个Acr基因提供了有用的对CRISPR基因编辑进行控制的生物技术工具。

11.Science:新研究证实体育锻炼如何改善阿尔兹海默病症状
doi:10.1126/science.aan8821; doi:10.1126/science.aau8060


在一项新的研究中,来自美国麻省总医院(MGH)的研究人员发现编码记忆的大脑结构中的神经发生(neurogenesis)---诱导新神经元的产生---能够改善阿尔茨海默病小鼠模型中的认知功能。他们的研究表明这些对认知的有益影响能够被阿尔茨海默病患者大脑中存在的有害的炎症环境破坏,而体育锻炼能够“清理”这种炎症环境,从而允许新的神经元能够存活和改善阿尔茨海默病小鼠模型的认知。相关研究结果发表在2018年9月7日的Science期刊上,论文标题为“Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model”。
图片来自Science, doi:10.1126/science.aan8821。

成体神经发生---在胚胎阶段之后和在一些动物的新出生期发生的新神经元产生---在海马体和另一种被称为纹状体的大脑结构中进行着。虽然成体海马体神经发生(adult hippocampal neurogenesis, AHN)对学习和记忆是至关重要的,但是这一过程如何影响阿尔茨海默病等神经退行性疾病仍未得到充分了解。

在这项研究中,这些研究人员着手研究AHN受损如何在小鼠模型中导致阿尔茨海默病病理特征和认知功能受损,以及增加AHN是否能够减轻症状。他们的实验表明在小鼠模型中,AHN能够通过体育锻炼或药物治疗和促进神经祖细胞产生的基因疗法加以诱导。动物行为测试结果揭示出对已通过药物和遗传手段诱导神经发生的小鼠而言,它们仅获得有限的认知益处。但是对通过体育锻炼诱导AHN的小鼠而言,它们表现出改善的认知能力和下降的β-淀粉样蛋白水平。

Tanzi解释道,“尽管体育锻炼诱导的AHN通过启动神经发生改善阿尔茨海默病小鼠模型的认知,但是试图通过使用基因疗法和药物来达到这一结果并没有带来益处。这是因为由药物和基因疗法诱导的新生神经元不能够在已被阿尔茨海默病病理特征(特别是神经炎症)破坏的大脑区域中存活。因此,我们想要了解体育锻炼引起的神经发生存在着哪些不同。”

Choi说,“我们发现关键的区别在于体育锻炼也开启了脑源性神经营养因子(BDNF)的产生---已知它在神经元生长和存活中起着非常重要的作用,这就为新的神经元存活下来创造了一个更好的大脑环境。通过联合使用诱导神经发生和增加BDNF产生的药物和基因疗法,我们能够成功地模拟体育锻炼对认知功能的影响。”

12.Science:重大进展!利用CRISPR基因编辑技术成功地恢复杜兴氏肌肉萎缩症狗模型中的抗肌萎缩蛋白表达
doi:10.1126/science.aau1549


杜兴氏肌肉萎缩症(Duchenne muscular dystrophy, DMD,也译为杜兴氏肌肉营养不良症)是儿童中的一种最常见的致命性遗传疾病。DMD在男孩中的发病率为1/5000。它导致肌肉和心脏衰竭,并导致在30岁出头时过早死亡。当患者的肌肉退化时,他们被迫坐在轮椅上,而且当他们的横膈膜减弱时,他们最终依赖呼吸器进行呼吸。尽管科学家们几十年来已知抗肌萎缩蛋白(dystrophin)编码基因发生让这种蛋白不能表达的突变导致这种疾病,但是迄今为止还没有一种有效的治疗方法存在着。

在一项新的研究中,来自美国德克萨斯大学西南医学中心、Exonics治疗公司(Exonics Therapeutics)和英国皇家兽医学院的研究人员首次在4只携带着在DMD患者最常见的突变的狗中利用CRISPR基因编辑技术阻止DMD进展。他们记录了这些DMD狗模型中的肌纤维取得前所未有的改善。相关研究结果于2018年8月30日在线发表在Science期刊上,论文标题为“Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy”。论文通信作者为德克萨斯大学西南医学中心哈蒙再生科学与医学中心主任Eric Olson博士。

Olson及其团队之前通过在重要的DNA突变位点上进行单次切割,在小鼠体内和人细胞中校正了导致DMD的基因突变。在这项最新的研究中,Olson团队使用一种名为腺相关病毒(AAV)的无害病毒将CRISPR基因编辑组分运送到抗肌萎缩蛋白编码基因(共含有79个外显子)的外显子51上。

这些研究人员利用这种单次切割的CRISPR基因编辑技术恢复这些狗的全身肌肉中的抗肌萎缩蛋白产生,其中它在心脏中的水平恢复到正常时的92%,在横膈膜中的水平恢复到正常时的58%。科学家们已估计若要给患者带来显著的益处,抗肌萎缩蛋白水平需要达到15%的阈值。

13.Science:重磅!西安交大叶凯团队成功破译罂粟基因组
doi:10.1126/science.aat4096


在一项新的研究中,来自中国西安交通大学、上海海洋大学;英国约克大学、威康基金会桑格研究所;澳大利亚太阳制药私人有限公司的研究人员破译出罂粟(opium poppy)基因组的DNA密码,揭示出这种植物产生用于制造重要药物的药用化合物的关键步骤。这一发现可能为科学家们提高这种药用植物的产量和抗病性铺平了道路,从而确保可靠和廉价地供应最有效的用于缓解疼痛和姑息治疗的药物。相关研究结果于2018年8月30日在线发表在Science期刊上,论文标题为“The opium poppy genome and morphinan production”。论文通信作者为西安交通大学青年科学家叶凯(Kai Ye)教授和约克大学的Ian A. Graham教授。论文第一作者为西安交通大学的郭立(Li Guo)副教授和杨晓飞(Xiaofei Yang)讲师、约克大学的Thilo Winzer和Yi Li,以及威康基金会桑格研究所的Zemin Ning。
罂粟,图片来自Részletes engedély/Wikimedia。

这些研究人员取得的突破揭示出导致咳嗽抑制剂那可丁(noscapine)以及止痛药吗啡(morphine)和可待因(codeine)产生的生物合成途径的起源。

在这项新的研究中,这些研究人员获得2.7Gb的分布在11条染色体上的罂粟基因组序列的高质量组装。这使得他们能够鉴定出一个较大的由15个基因组成的基因簇,这些基因编码参与两种不同生物合成途径的酶,其中这两种生物合成途径参与了可待因和吗啡的前体物质和那可丁的产生。

植物具有重复(或者说加倍)其基因组的能力,当这种情况发生时,重复的基因就能够自由地进化出其他的功能。这使得植物能够产生新的机制来制造多种化合物,用于抵御有害微生物和食草动物的侵袭,和吸引蜜蜂等有益物种来协助授粉。

这种罂粟基因组装配允许这些研究人员能够鉴定出聚集在一起产生STORR基因融合的祖先基因,其中这种基因融合是导致吗啡和可待因产生的生物合成途径的第一个主要步骤。罂粟基因组在7800万年前发生一次相对较新的全基因组重复事件。这种基因融合事件在这种全基因组重复事件之前发生。(生物谷 Bioon.com)

版权声明:本文系生物谷原创编译整理,未经本网站授权不得转载和使用。如需获取授权,请点击
温馨提示:87%用户都在生物谷APP上阅读,扫描立刻下载! 天天精彩!


相关标签

最新会议 培训班 期刊库