新功能、新界面、新体验,扫描即可下载生物谷APP!
首页 » 高分辨率成像 » 2017年6月Cell期刊不得不看的亮点研究

2017年6月Cell期刊不得不看的亮点研究

来源:本站原创 2017-06-30 21:15

2017年6月30日/生物谷BIOON/---6月份即将结束了,6月份Cell期刊又有哪些亮点研究值得学习呢?小编对此进行了整理,与各位分享。

1.Cell:重磅!揭示肠道-大脑对话新机制
doi:10.1016/j.cell.2017.05.034
小鼠肠道,图片来自Kelvinh88/Wikipedia。

小鼠肠道感觉细胞通过血清素直接与肠道神经元进行对话,让大脑知道某些化合物是否存在。这些肠道细胞将肠道的内含物告诉大脑。但是对这种肠道-大脑对话的分子机制的认识因技术限制受到阻碍。如今,在一项新的研究中,通过研究小鼠肠道类器官和肠道组织切片中的一种关键的肠道感觉细胞(即肠嗜铬细胞),来自美国加州大学旧金山分校等研究机构的研究人员揭示出哪些分子信号激活这些所谓的肠嗜铬细胞(enterochromaffin cell),以及这些细胞如何将这些化合物的存在传递到中枢神经系统。相关研究结果于2017年6月22日在线发表在Cell期刊上,论文标题为“Enterochromaffin Cells Are Gut Chemosensors that Couple to Sensory Neural Pathways”。

在来自小鼠的肠道类器官中,Julius团队研究了肠嗜铬细胞的电生理学性质、蛋白表达和血清素分泌等等。他们发现这些细胞表达电压门控离子通路,而且是电兴奋性的(它是感觉细胞的一种特征)。

随后,通过筛选30种可能的肠腔化合物,他们发现几种化合物能够触发肠嗜铬细胞兴奋。它们是异硫氰酸烯丙酯(在山葵和其他的芥菜中发现的一种刺激剂)、异戊酸(肠道细菌产生的一种脂肪酸)、儿茶酚胺类激素(多巴胺、肾上腺素和去甲肾上腺素)。

利用来自含有荧光标记肠嗜铬细胞的小鼠的肠道组织样品,Julius团队研究了这些细胞与神经元的关系。他们发现让表达血清素受体的神经元激活似乎是通过与肠嗜铬细胞之间形成突触连接实现的,而且肠嗜铬细胞表达突触前蛋白,而附近的神经元表达突触后蛋白。这些结果都表明这两种细胞彼此之间直接交谈。再者,利用去甲肾上腺素或异戊酸刺激肠上皮会触发这些神经元的活性。

2.Cell:挑战常规!上千个周围基因影响大多数疾病
doi:10.1016/j.cell.2017.05.038


对导致疾病的基因进行研究中,一种核心假设是这些基因簇集在与这种疾病直接相关的分子通路中。但是在一项新的研究中,来自美国斯坦福大学医学院的研究人员指出事实并非如此。他们发现细胞中的基因活性形成一种广泛的网络结构以至于几乎任何一个基因都能够影响疾病。因此,大多数疾病的遗传特征并不是归因于少数核心基因(core gene)而是归因于来自绝大多数周围基因(peripheral gene)的微小贡献。这些周围基因在致病通路外发挥功能。这似乎表明任何给定的性状并不是少数基因控制着的。相反,在基因组中,几乎每个基因都会影响关于我们的一切。这些影响可能是微小的,但是它们产生累积效应。相关研究结果发表在2017年6月15日的Cell期刊上,论文标题为“An Expanded View of Complex Traits: From Polygenic to Omnigenic”。论文通信作者为斯坦福大学医学院遗传学教授、生物学教授Jonathan Pritchard博士;博士后研究员Yang Li博士;研究生Evan Boyle。

这些研究人员将他们对致病性基因的易引起争论的新理解称为“全基因模型(omnigenic model)”,即几乎任何一个基因都会影响疾病和其他的复杂性状。Pritchard说,在任何一个细胞中,可能有50~100个核心基因对一种给定的性状产生直接的影响,而且在这个相同的细胞中表达的另外10000个周围基因对这种性状产生间接的影响。

每个周围基因都对这种性状产生较小的影响。但是鉴于这些上千个周围基因在数量上远远超过核心基因,大多数与疾病相关的基因变异和其他的性状是由这上千个周围基因导致的。因此,讽刺的是,这些对疾病的影响最为间接和比较小的周围基因最终导致大多数的疾病遗传模式产生。

3.Cell:突破性成果!科学家发现能有效抵御耐药性细菌感染的新型抗生素—pseudouridimycin
doi:10.1016/j.cell.2017.05.042


近日,一项刊登在国际杂志Cell上的研究报告中,来自美国罗格斯大学等机构的研究人员通过研究发现了一种能够有效抵御耐药性细菌的新型抗生素—pseudouridimycin,这种抗生素由来自土壤样本中的微生物所产生,通过在测试管中进行试验,这种新型抗生素能够杀灭一系列药物敏感性和耐受性的细菌。

文章中,研究人员报道了这种新型抗生素pseudouridimycin的作用及机制;该抗生素能够通过一种结合位点来抑制细菌细胞中RNA聚合酶的功能,但其作用机制并不同于当前所使用的抗生素—利福平;因为pseudouridimycin能够通过一种不同与利福平的结合位点来抑制细菌生长,因此该抗生素往往不会促进细菌产生与利福平的交叉耐药性。

抗生素pseudouridimycin起着细菌RNA聚合酶核苷类似物抑制剂的作用,也就意味着其能够模仿三磷酸核苷(NTP),而NTP是细菌RNA聚合酶用来和成RNA的基本结构原件,这种新型抗生素能够通过占领NTP结合位点同细菌RNA聚合酶上的该位点紧密结合,从而抑制NTPs的结合。该抗生素是首个核苷类似物抑制剂,其能够选择性地抑制细菌RNA聚合酶的功能,但对人类机体RNA聚合酶并无影响。

4.Cell:颠覆传统认知!DNA双链复制存在极大的随机性
doi:10.1016/j.cell.2017.05.041

几乎地球上的所有生物都依赖于DNA复制。如今,来自美国加州大学戴维斯分校和斯隆凯特林癌症纪念中心的研究人员首次能够观察单个DNA分子的复制,并且取得一些令人吃惊的发现。首先,这种复制存在的随机性要比人们想象中的大很多。相关研究结果发表在2017年6月15日的Cell期刊上,论文标题为“Independent and Stochastic Action of DNA Polymerases in the Replisome”。论文通信作者为加州大学戴维斯分校微生物学与分子遗传学教授Stephen Kowalczykowski和斯隆凯特林癌症纪念中心研究员Kenneth Marians。论文第一作者为加州大学戴维斯分校博士后研究员James Graham。

通过使用复杂的成像技术和付出很大的耐心,这些研究人员能够在来自大肠杆菌的DNA复制时观察它,并且测量复制体(replisome)如何在不同的DNA单链上发挥作用。复制体是一种多蛋白复合体,包括DNA聚合酶、引物酶、解旋酶、单链结合蛋白和其他辅助因子。复制体位于每个复制叉处,进行DNA链的聚合反应。

5.Cell:肠道细菌有望延缓衰老,提高动物寿命
doi:10.1016/j.cell.2017.05.036


利用源自肠道细菌的补充物延缓衰老过程可能有朝一日是可行的。来自美国贝勒医学院和德克萨斯大学休斯顿健康科学中心的研究人员在秀丽隐杆线虫中鉴定出延长寿命、也延缓肿瘤进展和β-淀粉样蛋白堆积的细菌基因和化合物。β-淀粉样蛋白是一种与阿尔茨海默病相关联的化合物。相关研究结果发表在2017年6月15日的Cell期刊上,论文标题为“Microbial Genetic Composition Tunes Host Longevity”。

为了探究单个细菌基因对秀丽隐杆线虫寿命的影响,Wang与贝勒医学院分子与人类遗传学副教授Christophe Herman博士和专门开展细菌遗传学研究的其他同事们合作开展研究。他们采用了一种完整的大肠杆菌基因缺失文库;一组大肠杆菌集合,每种大肠杆菌缺失将近4000个基因中的一个。Wang说,“我们给秀丽隐杆线虫喂食每种突变细菌,然后研究这些线虫的寿命。在我们测试的将近4000个细菌基因中,29个基因当缺失时会增加这些线虫的寿命。12种突变细菌也会阻止这些线虫发生肿瘤生长和β-淀粉样蛋白堆积。”

进一步的实验表明一些突变细菌通过作用于这些线虫中的一些已知与衰老相关的过程增加寿命。其他的突变细菌通过过量产生荚膜异多糖酸(colanic acid)增加这些线虫的寿命。当这些研究人员给秀丽隐杆线虫提供纯化的荚膜异多糖酸时,这些线虫也活得更长。荚膜异多糖酸也在实验室果蝇和在实验室培养的哺乳动物细胞中表现出类似的影响。

6.Cell:对人肝细胞癌进行完整基因组分析
doi:10.1016/j.cell.2017.05.046


在全世界,肝癌是第二大癌症致死率,但是仅有有限的治疗选择来控制这种疾病。为了更多地了解这种癌症的遗传原因和鉴定肝细胞癌(HCC)的潜在新的治疗靶标,美国贝勒医学院人类基因组测序中心教授David Wheeler和美国梅约诊所医学教授Lewis Roberts领导的一个研究团队分析了来自全世界的363种肝癌病例中的基因组突变、DNA甲基化的表观遗传变化、RNA表达和蛋白表达。相关研究结果发表在2017年6月15日的Cell期刊上,论文标题为“Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma”。

作为大规模的癌症基因组图谱(TCGA)计划的一部分,这项研究代表着首个针对HCC的大规模的多平台分析,并且是针对这种肿瘤的多个方面进行开展的。Wheeler说,“在过去,存在肝癌的大规模队列研究,但是它们主要仅限于这种肿瘤的一个方面,即基因组突变。通过研究这种肿瘤的众多分子特征,我们在分子水平上更加深入地认识了肝癌细胞的运作。”

7.Cell:利用IFNγ靶向调节性T细胞有望改进肿瘤免疫疗法
doi:10.1016/j.cell.2017.05.005

肿瘤的三维显微图显示调节性T细胞(绿色),血管(红色)和肿瘤基质(蓝色)。图片来自Pitt Health Sciences/Vignali Lab。

在一项新的研究中,来自美国匹兹堡大学医学院和匹兹堡大学医学中心的研究人员发现一种线索可能释放免疫治疗药物的潜力,从而有望利用这些药物成功地治疗更多的癌症。这些在小鼠体内获得的发现表明靶向被称作调节性T细胞(regulatory T cell, Treg细胞)的免疫细胞亚群可能是治疗癌症的有效方法。他们也指出当前的免疫治疗药物发挥作用的一种重要的机制,从而为让这些药物变得更加高效提供线索。相关研究结果发表在2017年6月1日的Cell期刊上,论文标题为“Interferon-γ Drives Treg Fragility to Promote Anti-tumor Immunity”。

Vignali说,“我们在当前的这项研究中证实在小鼠中,Treg细胞中的Nrp1表达是维持它们阻止免疫系统清除肿瘤能力所必需的。令人关注的是,当Treg细胞缺乏Nrp1时,它们不仅不具有这种抑制能力,而且它们也更加积极地参与抗肿瘤免疫反应。有趣的是,我们也发现在具有较差预后的癌症患者中,表达Nrp1的Treg细胞亚群比例变得更高,这提示着这些发现可能也适用于人。”

为了获得这些发现,这些研究人员培育出一种经过基因改造的模式小鼠:Nrp1基因仅在一半Treg细胞群体中被剔除,但在另一半Treg细胞群体中是完好的。他们发现当与Nrp1在所有Treg细胞中都存在的正常小鼠相比,在这种模式小鼠中的肿瘤生长显著下降。

8.Cell:揭示一类常见的环境化学物促进癌症产生机制
doi:10.1016/j.cell.2017.05.010


根据一项新的研究,在汽车尾气、烟雾、建筑材料、家具、化妆品和洗发剂等众多产品中发现的一类常见的化学物(如乙醛和甲醛等)因能够破坏阻止我们的基因出现差错的修复机制而可能增加癌症产生的风险。相关研究结果发表在2017年6月1日的Cell期刊上,论文标题为“A Class of Environmental and Endogenous Toxins Induces BRCA2 Haploinsufficiency and Genome Instability”。

在这项新的研究中,论文通信作者、英国剑桥大学医学研究委员会癌症中心主任Ashok Venkitaraman教授及其团队使用了基因改造的人细胞和来自携带着一个乳腺癌基因BRCA2错误拷贝的患者的细胞,以便鉴定接触醛类物质可能促进癌症产生的机制。

我们的DNA遭受的损伤通常是当我们的体内的细胞发生分裂时产生的,这种损伤能够导致癌症产生,但是我们的身体具有它自己的防御机制来协助修复这种损伤。然而,Venkitaraman教授和同事们发现接触醛类物质会破坏这种防御机制,即便在正常的健康细胞中,也是如此,但是遗传一个BRCA2基因缺陷拷贝的人特别对这种损伤敏感。

这项新的研究证实醛类物质触发细胞中的BRCA2蛋白降解。在遗传单个BRCA2基因缺陷拷贝的人当中,这种效应将BRCA2蛋白水平降低到DNA充足修复所需的数量之下,从而破坏这些阻止突变出现的正常机制,这就可能促进癌症产生。

9.Cell:中国学者张泽民、彭吉润、欧阳文君团队首次发布大规模肿瘤单细胞水平免疫图谱
doi:10.1016/j.cell.2017.05.035


2017 年 6 月 15 日,北京大学生命科学学院 BIOPIC 中心、北京未来基因诊断高精尖创新中心、北大 - 清华生命科学联合中心张泽民研究组,首都医科大学附属北京世纪坛医院暨北京大学第九临床医学院肝胆胰外科彭吉润研究组,及美国 AMGEN 公司的欧阳文君研究组在《Cell》杂志发表了题为“Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing” 的研究论文,首次在单细胞水平上描绘了肝癌微环境中的免疫图谱。

张泽民研究组与彭吉润研究组及欧阳文君研究组深入合作,在单细胞水平对肝癌肿瘤微环境中 T 淋巴细胞的转录组及 T 细胞受体 (TCR) 序列进行了综合分析,完成了超过 5000 个 T 细胞的单细胞测序数据。基于生物信息学分析,通过对 T 细胞进行亚群分类、发展轨迹分析及比较不同亚群中 T 细胞克隆的分布,该研究探索了不同亚群之间的关系,鉴定每个亚群特异的基因表达,揭示了肿瘤中的 T 细胞在功能、分布和发展状态方面和其他部位的 T 细胞截然不同。肿瘤在免疫系统中出现逃逸的主要原因包括杀伤性 CD8 T 细胞的功能紊乱及抑制性 T 细胞的大量存在,针对这两类细胞寻找靶点是免疫疗法的主要方向。本研究着重探索了肿瘤中这两类细胞的特异表达基因,发现基因 Layilin 在这两群细胞中均特异性表达,并通过体外实验证明该基因对于 CD8 T 细胞的杀伤功能有抑制调节作用,可能作为一个免疫疗法的新靶点。同时,基于 TCR 数据分析,该研究发现肝癌内存在大量肿瘤组织特异的克隆增生的 T 细胞,但是这些细胞大多处于耗竭状态,从而揭示了肿瘤细胞逃逸免疫监视的原因。此外,该研究还描绘了初始 T 细胞向耗竭状态的发展轨迹,并在耗竭性 CD8 T 细胞亚群中发现了一类 FOXP3+ 抑制性 T 细胞的存在,提出了耗竭 T 细胞会进一步发展成抑制性 T 细胞的潜在发展方向。

10.Cell:深度脑部刺激或无需电极
doi:10.1016/j.cell.2017.05.024


近日,美国麻省理工学院(MIT)研究人员开发出一种深度激发大脑内部神经元的方法,无需使用当前深度脑部刺激所需的植入装置。在发表于《细胞》杂志的论文中,研究人员通过操控小鼠头部的电极,让它的耳朵、爪子和胡须摇动。这种被称为时间干涉(TI)刺激的新技术为大脑研究打开了另一扇门。

研究人员通过大脑物理实体模型计算机建模和活体小鼠实验,测试了 TI 刺激,并采用 c -fos 蛋白标记了神经元的活动。结果显示,该电信号可激发大脑中的目标区域,而不是其外围的区域。通过在 3D 空间内操控 TI 刺激的参数,研究人员还能让小鼠的爪、胡须和耳朵左右交替活动。但研究人员尚不确定神经元在这里是如何运作的。

此外,Boyden、第一作者Nir Grossman和同事,还在多次安全实验中证实了 TI 刺激不会损害脑组织、诱发癫痫或者导致热脑细胞过热。但电刺激植入装置可以比 TI 刺激更集中地作用于特定脑部区域,正是由于这一特点其可以治疗某些病症。不过,其他一些疾病患者可能会受益于更加广泛的深度脑部刺激,如中风、创伤性脑损伤和失忆症。目前,研究者计划在人类志愿者身上进行 TI 刺激研究。

11.Cell:中国科学家发现人类Piwi基因突变导致男性不育
doi:10.1016/j.cell.2017.04.034

中科院生物化学与细胞生物学研究所刘默芳研究组与上海市计划生育科学研究所施惠娟研究组合作研究,首次发现人类Piwi基因突变可导致男性不育,并深入揭示了其致病机理,为相关男性不育症的早期分子诊断及精准医疗提供了理论依据。5月26日凌晨,国际著名学术期刊《细胞》(Cell)在线发表了该项研究成果。

在这项研究中,苟兰涛博士及同事康俊炎、戴鹏、王鑫、李锋等在刘默芳研究员的指导下,将研究对象锁定在一种名为Hiwi的人类Piwi基因上,经过筛查413例患有无精、弱精症的临床病例,发现其中3例患者该基因中的关键元件——“D-box”发生了突变。研究人员通过动物实验进一步证实,携带该基因突变的雄性小鼠均不能繁育后代,尽管它们仍能产生少量精子,但这部分精子形态异常、头部结构疏松、无活力,其疾病表型与患者完全一致。通过对患者亲属进行的基因检测发现,该类突变可来源于个体基因自发变异,也可由母亲遗传获得。

机制研究揭示,Piwi基因的蛋白质产物(PIWI蛋白)具有将RNF8“扣留”于细胞核外的功能。正常小鼠体内PIWI蛋白会在精子发育后期被自然降解,于是RNF8被“松绑”后进入细胞核内开启“一键转换”程序,帮助精子发育完成。而Piwi基因“D-box”元件发生突变的小鼠,PIWI蛋白在后期不能被正常代谢,因而导致大量RNF8被“扣留”在细胞核外,鱼精蛋白与组蛋白交换受阻,最终造成精子数量剧烈减少、精子头部结构异常及精子活力完全丧失。

针对该发现,研究人员将一段RNF8截短多肽导入突变小鼠的精子细胞后,可有效阻断Piwi基因蛋白产物对RNF8的“扣留”,从而逆转精子细胞中鱼精蛋白与组蛋白的交换障碍,恢复精子的正常形态及游动能力,提示该策略对临床治疗此类无精、弱精症具有重要理论参考价值。

12.Cell:研究解密面孔在大脑中的编码
doi:10.1016/j.cell.2017.05.011


当你看人面照片时,大脑会立刻识别出照片上的人是谁,或你之前是否见过。近年来,神经学家一直试图弄清大脑是如何识别和感知人脸的。近日,刊登于《细胞》期刊上的研究显示,科学家已经了解灵长类动物大脑中的人脸识别编码系统。

“我们发现,这个编码系统非常简单。”美国加州理工学院生物工程教授Doris Tsao说,“我们发现,当一只猴子看到一张面孔时,其大脑中仅有205个神经元参与了相关编码过程。”

Tsao团队将电极插入猕猴大脑中,记录了面孔补丁区的面部识别细胞的信号。结果发现,当一个面孔被投摄入50维面部空间内的单个轴线时,每个细胞被成比例激发。于是,研究人员研发出一种算法,以解码面部识别的神经响应。结果显示,猕猴的2个面部补丁区的细胞就足以重建面部—— 一个区域有106个细胞,一个有99个。(生物谷 Bioon.com)

生物谷更多精彩盘点!敬请期待!

相关新闻阅读:
2017年5月Cell期刊不得不看的亮点研究


版权声明:本文系生物谷原创编译整理,未经本网站授权不得转载和使用。如需获取授权,请点击
温馨提示:87%用户都在生物谷APP上阅读,扫描立刻下载! 天天精彩!


...(全文约11564字)
<< 去看24小时最新(38)

相关标签

最新会议 培训班 期刊库