新功能、新界面、新体验,扫描即可下载生物谷APP!
首页 » 动植物学科 » 2017年1月Science期刊不得不看的亮点研究

2017年1月Science期刊不得不看的亮点研究

来源:生物谷 2017-01-31 19:05

2017年1月31日/生物谷BIOON/--1月份即将结束了,1月份Science期刊又有哪些亮点研究值得学习呢?小编对此进行了整理,与各位分享。

1.Science:伤口愈合会留疤痕可怎么办?看这里!
doi:10.1126/science.aai8792
科学家们最近找到一种让伤口愈合为再生皮肤而非疤痕组织的新方法,这种方法可以将伤口处最常见的细胞类型转变成脂肪细胞,在该研究之前一直认为这种转变在人体上不可能发生。相关研究结果发表在国际学术期刊Science上。

在正常情况下皮肤中有脂肪细胞存在,但是当伤口愈合为疤痕脂肪细胞就会消失。肌成纤维细胞是处于愈合过程的伤口中最常见的一类细胞,被认为只能形成疤痕组织。疤痕组织中也没有任何毛囊因此看起来与正常皮肤不同。研究人员以这些特性为基础进行了他们的研究。

该研究发现毛发和脂肪各自发育但是发育过程并非完全独立进行。研究人员曾经发现了毛囊形成所必需的一些因子,现在他们又发现一些由再生毛囊产生的因子可以将周围的肌成纤维细胞转变成脂肪细胞而非形成疤痕。没有毛发形成的时候也不会形成脂肪细胞,一旦形成毛发就会随之形成脂肪细胞,并且与已经存在的脂肪细胞没有区别,这样愈合形成的伤口就会看起来非常自然而不会留下疤痕。

到底毛囊产生了什么信号诱导了脂肪细胞的形成呢?研究人员发现一种叫做BMP的因子发挥了重要作用,引导肌成纤维细胞变成脂肪细胞。“通常来说,肌成纤维细胞无法变成另外一种类型的细胞。但是我们的工作表明我们可以影响这些细胞使其高效稳定地转变成脂肪细胞,并且在小鼠和培养的人类细胞模型上都可以发生该过程。”文章作者George Cotsarelis这样说道。

2.Science:前列腺癌病人为何抵抗雄激素剥夺治疗?科学家找到重要原因
doi:10.1126/science.aah4199

发生转移的前列腺癌目前仍然不可治愈。在发表在国际学术期刊Science上的一项新研究中,罗斯威尔帕克癌症研究所的科学家们发现两个重要基因能够帮助前列腺癌进展促进治疗抵抗的发生。他们的工作阐述了前列腺癌对治疗产生适应性的新机制,为干扰甚至逆转这一致命过程提供了新的可能。

在这项研究中,研究人员借助临床前模型发现抑癌基因Rb1的缺失会诱导前列腺癌对治疗产生适应性并促进前列腺癌的转移进展。他们还发现另外一个基因EZH2表达增加也与前列腺癌对治疗产生的适应性有关,或可用作治疗这种前列腺癌的靶点。通过EZH2抑制剂药物治疗产生抵抗的肿瘤可以增加前列腺癌对雄激素剥夺治疗的敏感性。

3.Science:科学家成功解析HIV病毒关键结构 攻克重大难题
doi:10.1126/science.aah5163
美国Salk研究所的科学家们最近解析了HIV 病毒中一个关键部分的原子结构,这个叫做整合体(intasome)的关键结构能够帮助HIV整合到人类宿主DNA并在体内复制。相关研究结果发表在国际学术期刊Science上,该研究有助于开发新的HIV治疗药物。

在这项新研究中,研究人员使用了单颗粒低温电子显微镜,这种技术能够帮助科学家们对比较大的复杂动态分子进行图像捕捉。他们在病毒整合体上添加了一个特殊蛋白促进整合体在甘油中的溶解性,并加入了一些盐离子防止蛋白聚集成块。

所有逆转录病毒的整合体都有核心结构成分来执行整合功能。研究人员将HIV整合体的核心成分与PFV的进行对比发现两者存在一些差别。研究人员表示,虽然只是很小的差别,但是对于药物开发和理解药物抵抗机制来说可能非常重要。

令研究人员感到惊讶的是,HIV的整合体比其他逆转录病毒更加复杂。之前已经知道HIV整合体的核心由四部分组成,但是新研究发现HIV整合体还有更多的组成部分。研究证据表明更加复杂的整合体可以更好地帮助HIV将自身整合到宿主基因组中。

研究人员表示,HIV整合体的复杂性提示了自然如何塑造逆转录病毒的进化。HIV 病毒可以完成其他病毒不能完成的功能,比如通过活跃的转运过程进入细胞核而不需要等待细胞分裂。研究人员打了个比方:HIV就像是奢侈品汽车,而其他逆转录病毒则是经济型汽车,虽然它们都是汽车但是HIV的整合体进行了更加重要的升级来完成不同工作。

研究人员推测,HIV的整合体采用多种途径进行组装。目前这项研究主要聚焦在宿主DNA上完成组装的整合体,未来还需要对结合宿主基因组之前以及结合了药物的整合体结构进行研究。

4.Science:SOX2促进前列腺癌产生治疗抵抗性机制
doi:10.1126/science.aah4307
前列腺癌生长是由雄激素促发的。基于靶向雄激素受体(androgen receptor, AR)的药物的雄激素剥夺治疗(androgen deprivation therapy, ADT)是治疗转移性前列腺癌病人的常用方法。虽然大多数病人会在开始治疗的时候产生应答,但是癌症几乎总会复发并且变得更具侵袭性,也更加致命。

一些癌症通过一种被称作细胞谱系可塑性的机制逃避靶向药物治疗,通过这种机制,肿瘤细胞获得一种存活不再依赖于药物靶标的细胞谱系的表型特征。

为了更加深入探究这种治疗抵抗性产生的机制,在一项新的研究中,来自美国斯隆凯特琳癌症纪念中心的Charles L. Sawyers及其团队利用体外和体内人前列腺癌模型证实这些肿瘤能够通过在表型上由AR依赖性导管腔上皮细胞转化为不依赖于AR的基底样细胞,对抗雄激素药物恩杂鲁胺(enzalutamide)产生耐药性。这种细胞谱系可塑性是由TP53和RB1的功能性缺失引起的,并且受到重编程转录因子SOX2表达上调的调节。

Sawyers团队进一步证实恢复TP53和RB1的功能或抑制SOX2表达能够逆转这种细胞谱系可塑性。

5.Science:科学家成功利用光实现对细胞逻辑网络的控制
doi:10.1126/science.aah3404

蛋白质是维持机体生命活动的重要分子,蛋白质能够帮助携带氧气、构建组织、进行DNA复制,同时还能够协调细胞间的诸多“事件”。如今来自美国北卡大学教堂山分校的研究人员通过研究开发出了一种新方法,该方法能够轻松利用开关来控制机体细胞中蛋白质的功能发挥,这就为研究者提供了一种新型的研究工具,而研究者仅利用光就能深入研究多种疾病的发病原因了,相关研究刊登于国际杂志Science上。

在这项最新研究中,研究人员就对光遗传学技术进行了扩展,使其在不改变蛋白质功能的前提下能够有效控制一系列蛋白的表达,从而就能够使光控蛋白发挥自己应有的功能,这种光控蛋白在细胞中的任何地方都能够正常表达,因此研究者们就能够根据这些蛋白开启/关闭的位置来研究蛋白质发挥功能的机制。研究者Hahn教授说道,我们能够利用光对完整的蛋白质来进行深入研究,我们所开发的这种光控开关是通用的,而且速度非常快,其能够对蛋白质进行快速开启/关闭,通过改变光的强度就能够控制激活或失活蛋白的水平,而且通过控制光照的时间,也能够控制细胞中不同位置的蛋白被激活表达的时间。

细胞行为的很多方面都依赖蛋白活性的短暂快速改变,但这些改变往往会在确定的位置发生,相同的蛋白如果在不同的地方被激活,其就会诱发细胞产生一系列不同的变化;在这项研究中,研究人员利用一种复杂的计算方法在不改变蛋白质正常功能的前体下,鉴别出了蛋白质中能够被修饰的部位,同时研究者还发现,蛋白质表面经常存在的环状蛋白结构也能够被光进行修饰。

6.Science:突破性成果!科学家重编程胚胎干细胞成功扩展其潜在的细胞命运
doi:10.1126/science.aag1927

近日,一项刊登在国际杂志Science上的研究报告中,来自加利福尼亚大学等机构的研究人员通过联合研究开发出了一种新方法,该方法能够对小鼠胚胎干细胞进行重编程使其能够表现出颇似受精卵一样的发育特性。研究者指出,这些全能样的干细胞不仅能够产生发育胚胎中所有的细胞类型,还能够产生一些特殊类型的细胞,这些细胞能够促进胚胎和母体之间的营养交换。

MicroRNAs是一类小型的非编码RNA分子,其能够调节基因表达;研究人员发现,名为miR-34a的MicroRNAs分子似乎能够作为一种“制动器”来抑制胚胎干细胞和诱导多能干细胞产生胚外组织,当MicroRNA被遗传性地移除后,上述两种细胞都能够扩展它们的发育决策来产生胚胎细胞类型、胎盘以及卵黄囊。研究人员发现,大约20%缺失MicroRNA的胚胎干细胞能够表现出扩展性的潜在命运,此外,这种效应或许能够在细胞培养液中维持一个月。

让研究者们非常惊奇的是,仅仅操控单一的MicroRNA就能够扩展胚胎干细胞的细胞命运决策,研究者不仅鉴别出了一种能够调节全能性干细胞的新型机制,还揭示了非编码RNAs在干细胞命运中的重要性。此外,这项研究中,研究人员还发现了miR-34a分子和小鼠机体中一类逆转录转座子之间的关联,逆转录转座子被认为是“垃圾DNA”,很多年来生物学家们推测这类转座子在机体正常发育期间似乎并没有用处,但本文研究中研究者发现逆转录转座子似乎和早期胚胎的决策制定之间也存在着密切的关联。

7.Science:重大突破!科学家首次在细菌中发现朊病毒样蛋白
doi:10.1126/science.aai7776
图片摘自:www.nature.com/ James Cavallini/SPL

朊病毒(Prions)是一种被认为能够引发诸如疯牛病等大脑退行性疾病的感染性因子,如今研究人员在细菌中或许也发现了朊病毒的踪迹。肉毒杆菌是一种能够诱发中毒的细菌,研究者发现,当肉毒杆菌中的一部分蛋白插入到酵母和大肠杆菌的细胞中时,该蛋白的行为类似于朊病毒,相关研究发表于Science杂志上。

截止到目前为止,研究者仅在真核生物的细胞中发现了朊病毒。

在最新的研究中,研究人员利用能够识别酵母细胞中产生朊病毒蛋白的软件对大约6万个细菌基因组进行了分析,最后他们发现了一种细菌分泌性的蛋白—Rho,在诸如肉毒杆菌和大肠杆菌等很多细菌中,Rho都是一种基因表达的主要调节子,因此该蛋白能够控制许多基因的活性。

当将将从肉毒杆菌中取出的Rho朊病毒蛋白形成部分注入到大肠杆菌中时,就会出现畸形蛋白质的聚集形成,此外,当小段蛋白质被插入到酵母细胞时,其就会替代酵母细胞中一种已知的朊病毒形成蛋白的功能。研究人员发现,尽管在大肠杆菌中正常版本的Rho能够抑制基因活性,但当该蛋白处于朊病毒形式下时很多基因都会活性表达,这就表明,朊病毒或许会促进细菌适应多种类型的环境压力,比如研究者还发现,大肠杆菌能够对Rho的朊病毒形式进行修饰,使其对乙醇能够更加耐受。

相关研究结果表明,大约在23亿年前,在真核生物和细菌间,朊病毒就已经表现出了进化上的分裂;研究者Hochschild说道,在自然界中朊病毒要比我们此前假设的分布要更广泛一些,当然我们认为在细菌中或许还存在其它形式的形成朊病毒的蛋白。

由于朊病毒能够遗传,研究者认为,这种蛋白能够促进细菌在不需要进行遗传突变的前提下对其特性进行遗传,而细菌或许也能够对环境快速做出反应,比如应对抗生素时;下一步研究人员将进一步研究证实,在天然宿主中Rho是否能够扮演类似朊病毒的角色,研究者Chien说道,但这或许看起来比较困难,因为相比其它实验室有机体(细菌)而言,肉毒杆菌似乎并不太容易进行遗传性实验。

8.Science:令人意外!发现新的调节细胞衰老的蛋白TZAP
doi:10.1126/science.aah6752
在一项新的研究中,来自美国斯克里普斯研究所(TSRI)的研究人员发现一种新的蛋白微调参与衰老的细胞时钟。相关研究结果于2017年1月12日在线发表在Science期刊上,论文标题为“TZAP: A telomere-associated protein involved in telomere length control”。

这种新的蛋白被称作TZAP,结合到染色体的末端上,决定着端粒(保护染色体末端的DNA片段)的长度。理解端粒长度是至关重要的,这是因为端粒设定着体内细胞的寿命,决定着衰老和癌症发病率等关键性的过程。

论文通信作者、TSRI副教授Eros Lazzerini Denchi说,“端粒代表着一个细胞的时钟。你出生时具有某种长度的端粒。细胞每分裂一次,它就丢失一小部分端粒。一旦端粒变得太短,细胞就不能够再分裂。”

在这项新的研究中,研究人员发现TZAP控制一种被称作端粒修剪(telomere trimming)的过程,从而确保端粒不会变得太长。

Lazzerini Denchi解释道,“这种蛋白为端粒长度设置上限。这允许细胞增殖,但增殖次数不会太多。”

在过去几十年来,已知特异性地结合到端粒上的蛋白是端粒酶和一种被称作Shelterin复合体的蛋白复合体。发现特异性地结合到端粒上的TZAP是令人吃惊的,这是因为这个领域的很多科学家们认为不再存在结合到端粒上的其他蛋白。

9.Science:首次发现病毒操纵细菌细胞结构机制
doi:10.1126/science.aal2130

在一项新的研究中,来自美国加州大学圣地亚哥分校的研究人员首次描述非常大的病毒在感染期间如何重编程细菌细胞内的结构。这一重编程过程让这些外来入侵的病毒诱导细胞产生上百个新的病毒,最终让它们感染的细胞因发生爆裂而死亡。

论文通信作者、加州大学圣地亚哥分校分子生物学教授Joe Pogliano说,“科学家们几百年来一直在研究病毒,但是在此之前,我们从未观察到这一点。我们开展的每个实验都获得新的激动人心的发现。”

感染细菌的病毒,也被称作噬菌体,是地球上数量最多的实体之一。

Joe Pogliano和他的同事们发现在噬菌体感染细菌后不久,它们破坏细菌细胞中许多现存的结构(包括细菌DNA),然后劫持剩余的细胞结构。这些噬菌体随后将整个细胞重新组装为一种高效的集中式工厂来产生更多的噬菌体。

Pogliano实验室博士后研究员Vorrapon Chaikeeratisak和研究生Katrina Nguyen发现入侵的噬菌体让细菌内部发生结构重组,从而产生类似于在真核细胞中发现的那些结构。

利用荧光显微镜,Chaikeeratisak和Nguyen发现当噬菌体在细菌细胞内复制时,它们构建区室从而将感染期间发生的不同过程分隔开来。

加州大学圣地亚哥分校化学与生物化学教授Elizabeth Villa和加州大学旧金山分校生物化学与生物物理学教授David Agard采用一种被称作低温电子断层扫描术(cryo-electron tomography, cryo-ET)的技术捕捉Chaikeeratisak和Nguyen起初在非常高的放大倍数下发现的那些过程的图像。

这些图像表明新的噬菌体颗粒在细菌的细胞核样区室(nucleus-like compartment)周围进行组装。最终,这些新的病毒颗粒让细胞发生爆裂并扩散出去,从而感染附近的细胞。

Pogliano说,“观察到噬菌体操纵细菌细胞是完全出乎意料之外的,这是因为之前还未曾发现噬菌体如此剧烈地让细菌细胞发生结构重组。这种简单的细菌细胞经过重组后产生的结构类似于现存的更加复杂的真核系统,从而模糊了简单的细菌细胞与植物和动物等高等生物细胞之间的界限。”

10.Science:首次发现血细胞突变与动脉粥样硬化产生相关联
doi:10.1126/science.aag1381
一项新的研究首次支持老年人血细胞中相对比较常见的突变与动脉粥样硬化存在关联。相关研究结果于2017年1月19日在线发表在Science期刊上,论文标题为“Clonal hematopoiesis associated with Tet2 deficiency accelerates atherosclerosis development in mice”。

心血管疾病(CVD)的一种特征是动脉粥样硬化,即动脉中斑块堆积。尽管心血管疾病是老年人死亡的主要原因,但是将近60%的动脉粥样硬化性心血管疾病(atherosclerotic cardiovascular disease)老年人并没有表现出常规的风险因素,或者仅表现出一种风险因素。这项研究结果和其他的数据提示着迄今为止尚未被鉴定出的年龄相关性风险因素可能导致心血管疾病产生。

在这项新的研究中,来自美国波士顿大学医学院的研究人员研究了体细胞DNA突变和动脉粥样硬化是否存在直接的关系。他们构建出一种实验模型来研究作为老年人血细胞中经常发生突变的多种基因中的一种基因,TET2如何影响斑块产生。在这些接受缺乏TET2的骨髓细胞移植的模型当中,斑块加快产生,而且可能是通过动脉壁中增加的巨噬细胞触发的炎症导致的。这些研究结果进一步证实一种假设:造血细胞突变是发生动脉粥样硬化的原因。

11.Science:中国科学家发现恢复西红柿更好风味的基因密码
doi:10.1126/science.aal1556
超市里的西红柿有什么问题?消费者说,它们缺乏风味,因此中国农业科学院深圳农业基因组所黄三文研究团队努力鉴定出现代西红柿中丢失的重要因子,以便将这些因子放回到它们当中,让它们恢复它们原有的风味。

在一项新的研究中,黄三文研究团队鉴定出具有更好西红柿风味的化学物组合。相关研究结果发表在2017年1月27日那期Science期刊上,论文标题为“A chemical genetic roadmap to improved tomato flavor”。

第一步就是找出在西红柿中上百种化学物中,哪些物质在风味中作出最大的贡献。

Klee说,现代西红柿缺乏充足的在更好风味中起着至关重要作用的糖分和挥发性化学物。他说,这些性状在过去50年里已丢失了,这是因为西红柿培育者没有工具来对风味进行常规的筛选。 为此,研究人员研究了西红柿中的等位基因,这些等位基因让西红柿具有它的特定性状。

Klee说,“我们想要鉴定出为何现代西红柿品种缺乏这些决定着风味的化学物。这是因为它们丢失了许多基因的更有价值的等位基因。”

他说,研究人员随后鉴定出这些良好的等位基因在西红柿基因组中的位置。这需要开展全基因组评估研究。这样,他们绘制出控制所有这些重要的化学物合成的基因图谱。Klee说,一旦他们发现这些基因,他们就通过遗传分析,将这些良好的等位基因替换现代西红柿品种中不好的等位基因。(生物谷 Bioon.com)

本文系生物谷原创编译整理,欢迎转载!点击 获取授权 。更多资讯请下载生物谷app.

生物谷更多精彩盘点,敬请期待!

温馨提示:87%用户都在生物谷APP上阅读,扫描立刻下载! 天天精彩!


...(全文约15572字)
<< 去看24小时最新(38)

相关标签

最新会议 培训班 期刊库