新功能、新界面、新体验,扫描即可下载生物谷APP!
首页 » 基金与期刊 » JCB:恢复线粒体移动性可用于修复受损伤神经细胞

JCB:恢复线粒体移动性可用于修复受损伤神经细胞

来源:生物谷 2016-06-13 10:19

(图片摘自www.sciencealert.com)

2016613日 讯 /生物谷BIOON/ --最近,科学家们发现神经细胞中的线粒体能够导致细胞的再生长,这一发现也许能够有助于神经系统疾病的新疗法的开发。

研究者们认为在线粒体上下功夫是修复神经系统损伤的关键。

线粒体是整个细胞的能量供应站,它内部的化学反应给神经元提供能量,并且促进神经细胞向整个机体蔓延。然而,随着时间的变化,线粒体的一些活动也会发生改变。

在成年的细胞中,线粒体会被一种叫做syntaphilin的蛋白质锁定在细胞中的特定位置,这意味着它们不再能够像幼年时的细胞中那样随意地在胞浆中移动。通过小鼠试验,作者恢复了线粒体的这一自由移动活性,并且发现这一改变能够使受损的神经细胞得到修复。

首先,作者通过遗传修饰的方式将神经细胞中表达线粒体syntaphilin蛋白的基因去除,这使得正常的线粒体重新生长,进而导致神经元的活性的恢复。

在上述实验中,小鼠此前受损的神经元能够得到再生。

这一结果告诉我们,将线粒体的移动能力恢复,能够激活其中的化学反应,进而促进神经元的再生。研究者们认为这一发现能够帮我我们治疗身体神经元受损的疾病。

与其它细胞不同,神经细胞难以自我修复,这也是为什么像阿兹海默症一类的神经系统疾病如此的难以治疗。但研究者们一直在不断尝试,其中包括试图将健康的神经元植入大脑中。

对于这一研究来讲,线粒体不仅仅通过其活动能力帮助科学家们抵抗疾病。一些研究者甚至认为线粒体能够扭转衰老的进程。

相关结果发表在《Journal of Cell Biology》杂志上。(生物谷Bioon.com

本文系生物谷原创编译整理,欢迎转载!点击 获取授权 。更多资讯请下载生物谷APP.

生物谷推荐英文原文报道:Scientists are using mobile mitochondria to repair damaged nerve cells

doi: 10.1083/jcb.201605101

PMC:

PMID:

Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits

Bing Zhou, Panpan Yu, Mei-Yao Lin, Tao Sun, Yanmin Chen, and Zu-Hang Sheng

 

Although neuronal regeneration is a highly energy-demanding process, axonal mitochondrial transport progressively declines with maturation. Mature neurons typically fail to regenerate after injury, thus raising a fundamental question as to whether mitochondrial transport is necessary to meet enhanced metabolic requirements during regeneration. Here, we reveal that reduced mitochondrial motility and energy deficits in injured axons are intrinsic mechanisms controlling regrowth in mature neurons. Axotomy induces acute mitochondrial depolarization and ATP depletion in injured axons. Thus, mature neuron-associated increases in mitochondria-anchoring protein syntaphilin (SNPH) and decreases in mitochondrial transport cause local energy deficits. Strikingly, enhancing mitochondrial transport via genetic manipulation facilitates regenerative capacity by replenishing healthy mitochondria in injured axons, thereby rescuing energy deficits. An in vivo sciatic nerve crush study further shows that enhanced mitochondrial transport in snph knockout mice accelerates axon regeneration. Understanding deficits in mitochondrial trafficking and energy supply in injured axons of mature neurons benefits development of new strategies to stimulate axon regeneration.

温馨提示:87%用户都在生物谷APP上阅读,扫描立刻下载! 天天精彩!


相关标签

最新会议 培训班 期刊库