新功能、新界面、新体验,扫描即可下载生物谷APP!
首页 » 转基因 » Nature:新型转基因水稻既高产又环保

Nature:新型转基因水稻既高产又环保

来源:生物谷 2015-07-31 10:12

 

2015年7月31日/生物谷BIOON/--水稻是全球超过半数人口的主要能量来源,对于人类的粮食安全有着举足轻重的影响。然而,水稻的生长过程每年会释放超过一亿吨甲烷气体,贡献了全球17%的甲烷(温室气体)的释放量。来自中国福建农科院、中国湖南农业大学、瑞典农业大学和美国太平洋西北国家实验室的联合课题组近期在《Nature》刊文称,通过转基因增加一个基因SUSIBA2,可以让水稻基本上不释放甲烷而更加环保,而且淀粉合成量增加,导致食物含有的能量更多。

大气中甲烷是继二氧化碳之后的第二大温室气体,对气候变暖的“贡献”占到20%。而水稻是因为人类活动而导致的第二大甲烷释放源。水稻引起的甲烷释放,是因为水稻是需要大量灌溉水的作物,水稻的根本被淤泥和水覆盖,水稻根部产生了热量和一些营养物质,这为产甲烷的产生提供了非常好的条件,这就导致了水稻会产生了7-17%的甲烷量,每年甲烷的排放量在两千五百万到一亿吨。随着人口增加和粮食需求增加,水稻的扩大栽培会继续恶化这个问题,导致更多的甲烷排放进入大气。而科学家一直试图找到转基因方法使得水稻减少甲烷释放,并且提供淀粉的合成或者聚集量,但是同时有这两个特性非常困难。

来自中国、美国和瑞典的联合课题组,首次成功研发出了第一种转基因水稻,可以同时减少甲烷释放量和提高稻谷颗粒淀粉含量。其中的关键基因是大麦中的糖信号分子(Sugar signalling in barley 2,SUSIBA2)。SUSIBA2是一种只存在于植物的转录因子,参与调节糖分子诱导的基因表达,因而可能参与了能量分子从合成到固定下来的信号通路。过量表达SUSIBA2可以导致植物更高的淀粉合成和沉积量,因此,如果在水稻叶子和茎秆中过量表达SUSIBA2,可能会增加植株地上部分的淀粉合成量以及在稻穗中的沉积,并且减少甲烷的释放量。

两个稳定的转基因SUSIBA2水稻株被选择出来,分别命名为SUSIBA2-77 和 SUSIBA2-80。其中SUSIBA2-77和其对照组(日本晴水稻)在2012年和2013年夏天在中国福州栽培实验。实验结果发现,水稻开花期前,SUSIBA2-77的甲烷释放量降低到了10%,开花后28天,甲烷释放量降为了0.3%。而且测序分析发现,甲烷释放减少确实与SUSIBA2基因相关,而不是随机插入基因组导致的。2014年秋季在中国福州、广州和南宁三地又栽培了SUSIBA2-77 和 SUSIBA2-80发现,这两种有相似的甲烷释放规律,即在早上甲烷释放量高于全天其他时间,这样正好验证了SUSIBA2可以控制糖代谢,夏天和白天太阳很大的时候SUSIBA2基因活性也很强,这时候甲烷释放量会降低很多。科研人员还将继续分析这个转基因为什么会导致甲烷的释放减少,他们希望得到更加具体的分子机制。

在全球变暖的大背景下,温度升高导致整个生态圈(包括水稻)的甲烷释放量都会增加,这又反过来会加剧全球变暖的进程。这个SUSIBA2的转基因水稻,则能够很好地完成碳固定和再分配,导致释放进入大气的碳减少,而富集在种子(稻穗)和地上部分(茎秆和叶子),这对于同时保障粮食产量和减少温室气体排放都有重要意义。水稻地上部分的生物量增加,又可以作为生物质燃料的原料,为人们提供更多的能源选择。因此,SUSIBA2转基因水稻的安全性验证如果能够通过的话,那么对于人类的可持续发展将具有重要意义。(生物谷Bioon.com)

本文系生物谷原创编译整理。欢迎转载!转载请注明来源并附原文链接。更多资讯请下载生物谷资讯APP

 

doi:10.1038/nature14673

PMC:

PMID:

Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice

Atmospheric methane is the second most important greenhouse gas after carbon dioxide, and is responsible for about 20% of the global warming effect since pre-industrial times1, 2. Rice paddies are the largest anthropogenic methane source and produce 7–17% of atmospheric methane2, 3. Warm waterlogged soil and exuded nutrients from rice roots provide ideal conditions for methanogenesis in paddies with annual methane emissions of 25–100-million tonnes3, 4. This scenario will be exacerbated by an expansion in rice cultivation needed to meet the escalating demand for food in the coming decades4. There is an urgent need to establish sustainable technologies for increasing rice production while reducing methane fluxes from rice paddies. However, ongoing efforts for methane mitigation in rice paddies are mainly based on farming practices and measures that are difficult to implement5. Despite proposed strategies to increase rice productivity and reduce methane emissions4, 6, no high-starch low-methane-emission rice has been developed. Here we show that the addition of a single transcription factor gene, barleySUSIBA2 (refs 7, 8), conferred a shift of carbon flux to SUSIBA2 rice, favouring the allocation of photosynthates to aboveground biomass over allocation to roots. The altered allocation resulted in an increased biomass and starch content in the seeds and stems, and suppressed methanogenesis, possibly through a reduction in root exudates. Three-year field trials in China demonstrated that the cultivation of SUSIBA2 rice was associated with a significant reduction in methane emissions and a decrease in rhizospheric methanogen levels. SUSIBA2 rice offers a sustainable means of providing increased starch content for food production while reducing greenhouse gas emissions from rice cultivation. Approaches to increase rice productivity and reduce methane emissions as seen in SUSIBA2 rice may be particularly beneficial in a future climate with rising temperatures resulting in increased methane emissions from paddies9, 10.

温馨提示:87%用户都在生物谷APP上阅读,扫描立刻下载! 天天精彩!


相关标签

最新会议 培训班 期刊库