打开APP

Nature:这么牛?单一蛋白就可引发帕金森疾病及多系统萎缩症的发生

  1. α-突触核蛋白
  2. 多系统萎缩症
  3. 大鼠
  4. 帕金森

来源:生物谷 2015-06-12 15:01

许多神经变性障碍都是由名为α-突触核蛋白的单一蛋白的集聚而引发,近日刊登在国际杂志Nature上的一篇研究论文中,来自安特卫普大学(University of Antwerp)等处的研究人员通过揭示了这些聚集物的结构及形状,同时研究者还发现这些聚集物可以决定个体是否患帕金森疾病或多系统萎缩症。

2015年6月12日 讯 /生物谷BIOON/ --许多神经变性障碍都是由名为α-突触核蛋白的单一蛋白的集聚而引发,近日刊登在国际杂志Nature上的一篇研究论文中,来自安特卫普大学(University of Antwerp)等处的研究人员通过揭示了这些聚集物的结构及形状,同时研究者还发现这些聚集物可以决定个体是否患帕金森疾病或多系统萎缩症。

典型的神经变性疾病就是大脑细胞间交流被打断同时还会引发特殊大脑区域出现细胞的缺失,对于某些大脑疾病而言这种现象和α-突触核蛋白直接相关,而α-突触核蛋白的精确功能目前并不清楚,但其在大脑细胞间的交流上扮演着重要角色;然而在特殊的疾病中,比如帕金森疾病、多系统萎缩症及路易体痴呆中,α-突触核蛋白会形成聚集物从而诱发神经变性的发生。

研究者Veerle Baekelandt教授指出,当α-突触核蛋白在脑细胞中聚集时,其就会干扰正常的细胞功能,该蛋白的聚集会打断脑细胞间的交流从而引发脑细胞死亡;截止到目前为止,研究者并不清楚α-突触核蛋白的聚集如何诱发不同疾病症状的产生。

我们就好比把α-突触核蛋白的聚集比喻成为建造一所房子一样,利用相同的原材料,即α-突触核蛋白,其最终可以聚集产生不同的结构;早在2013年研究者Ronald Melki就分离出了不同形式的纤维结构,其中两种重要的结构为圆筒式的纤维通心管结构,另一种为较宽的长条状结构;研究者将这些纤维结构分别注射到大脑的大脑和血管中,结果发现大鼠会出现不同的疾病症状,圆筒式的纤维通心管结构可以诱发大鼠产生帕金森疾病,而后者则会诱发多系统萎缩症的发生,究其原因,研究者推测这或许是因为α-突触核蛋白形成的不同结构所导致的疾病。

最后研究者表示,随着研究深入我们就会清楚观察到不同疾病之间的差异,但研究者表示他们或将深入研究来揭示α-突触核蛋白聚集形成的更多不同的形状,而并不仅仅是本文中提到的两种,本文研究为后期开发治疗神经变性疾病的新型疗法或新药提供了新的思路和线索。(生物谷Bioon.com)

本文系生物谷原创编译整理,欢迎转载!转载请注明来源并附原文链接。更多资讯请下载生物谷APP.

α-Synuclein strains cause distinct synucleinopathies after local and systemic administration

W. Peelaerts, L. Bousset, A. Van der Perren, A. Moskalyuk, R. Pulizzi, M. Giugliano, C. Van den Haute, R. Melki & V. Baekelandt

Misfolded protein aggregates represent a continuum with overlapping features in neurodegenerative diseases, but differences in protein components and affected brain regions1. The molecular hallmark of synucleinopathies such as Parkinson’s disease, dementia with Lewy bodies and multiple system atrophy are megadalton α-synuclein-rich deposits suggestive of one molecular event causing distinct disease phenotypes. Glial α-synuclein (α-SYN) filamentous deposits are prominent in multiple system atrophy and neuronal α-SYN inclusions are found in Parkinson’s disease and dementia with Lewy bodies2. The discovery of α-SYN assemblies with different structural characteristics or ‘strains’ has led to the hypothesis that strains could account for the different clinico-pathological traits within synucleinopathies3, 4. In this study we show that α-SYN strain conformation and seeding propensity lead to distinct histopathological and behavioural phenotypes. We assess the properties of structurally well-defined α-SYN assemblies (oligomers, ribbons and fibrils) after injection in rat brain. We prove that α-SYN strains amplify in vivo. Fibrils seem to be the major toxic strain, resulting in progressive motor impairment and cell death, whereas ribbons cause a distinct histopathological phenotype displaying Parkinson’s disease and multiple system atrophy traits. Additionally, we show that α-SYN assemblies cross the blood–brain barrier and distribute to the central nervous system after intravenous injection. Our results demonstrate that distinct α-SYN strains display differential seeding capacities, inducing strain-specific pathology and neurotoxic phenotypes.

版权声明 本网站所有注明“来源:生物谷”或“来源:bioon”的文字、图片和音视频资料,版权均属于生物谷网站所有。非经授权,任何媒体、网站或个人不得转载,否则将追究法律责任。取得书面授权转载时,须注明“来源:生物谷”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

87%用户都在用生物谷APP 随时阅读、评论、分享交流 请扫描二维码下载->