新功能、新界面、新体验,扫描即可下载生物谷APP!
首页 » Nature报道 » Nature:阿尔茨海默氏症的新遗传风险变异体

Nature:阿尔茨海默氏症的新遗传风险变异体

来源:Natureasia 2014-01-25 22:51

RR淀粉质前体蛋白、presenilin 1和 presenilin 2中引起阿尔茨海默氏症的突变的识别,使我们对这种疾病的病理生物学有了更好的认识。预计还会发现进一步的突变,但识别这种变异体一直具有挑战性。

本文作者采用外显子组测序方法来识别对晚发病的阿尔茨海默氏症有很大影响的低频率编码变异体。他们报告了PLD3基因中的几个编码变异体(编码磷脂酶D3),这些变异体至少将患病风险增加两倍。

PLD3也许在也也淀粉质的处理中起一定作用,并且还具有作为一个新的治疗目标的潜力。(生物谷Bioon.com)

生物谷推荐的英文摘要:

Nature         doi:10.1038/nature12825

Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer’s disease

Carlos Cruchaga,  Celeste M. Karch,  Sheng Chih Jin,  Bruno A. Benitez,  Yefei Cai,  Rita Guerreiro,  Oscar Harari,  Joanne Norton,  John Budde,  Sarah Bertelsen,  Amanda T. Jeng, Breanna Cooper,  Tara Skorupa,  David Carrell,  Denise Levitch,  Simon Hsu,  Jiyoon Choi, Mina Ryten,  UK Brain Expression Consortium (UKBEC),  Celeste Sassi,  Jose Bras,  J. Raphael Gibbs,  Dena G. Hernandez,  Michelle K. Lupton,  John Powell  et al.

Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD)1, 2. These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case–control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer’s disease in seven independent case–control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer’s disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer’s disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer’s disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-β precursor protein (APP) and extracellular Aβ42 and Aβ40 (the 42- and 40-residue isoforms of the amyloid-β peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.

温馨提示:87%用户都在生物谷APP上阅读,扫描立刻下载! 天天精彩!


相关标签

最新会议 培训班 期刊库