新功能、新界面、新体验,扫描即可下载生物谷APP!
首页 » 藻类之利害 » IECR:以浮萍为廉价原料制生物燃料

IECR:以浮萍为廉价原料制生物燃料

来源:ACS Press Release 2013-03-13 19:56

美国化学学会(American Chemical Society, ACS)《科研快讯》(ACS Press Release)近期报道了美国普林斯顿大学Christodoulos A. Floudas教授与中科院过程工程研究所研究员肖炘、李杰、曹宏斌,以及北京大学马炯副教授,中石油乔永博士和其石油化工研究院胡徐腾教授等联合完成的以浮萍为廉价原料制生物燃料的研究。文章发表在Industrial and Engineering Chemistry Research(《过程工程多尺度结构与系统专刊》)上。

该研究显示,漂浮在水面生长的水生植物——浮萍,因其生长快、可在废水中存活、不争粮、易于采收等优点,而且能够比水藻和其他水生植物更容易地收获,是制造生物燃料的理想原料,有助于在21世纪减少对石油和天然气的依赖。然而,目前几乎没有进行过关于使用浮萍作为生物燃料生产的原料的研究。

该研究利用已有技术经全局优化设计合成了由浮萍制交通燃料,包括热电水集成回用、排放全生命周期分析及拓扑结构设计的完整工艺流程。他们描述了使用现有技术生产汽油、柴油和煤油的浮萍提炼厂的4种假象情境。这些技术包括了把生物质转化成一种气体;把这种气体转化成甲醇;以及把甲醇转化成汽油和其他燃料。

这些结果表明,当油价超过每桶100美元时,小规模浮萍炼制过程(每天生产1千桶交通燃料)即可在成本上与石油交通燃料竞争,而较大规模浮萍炼制过程(每天生产5千桶交通燃料)则在油价超过每桶72美元时就可与石油交通燃料竞争。

该研究得到了中科院海外特聘研究员项目、中石油科学研究与技术开发项目以及美国国家科学基金的资助,(生物谷Bioon.com)

Thermochemical Conversion of Duckweed Biomass to Gasoline, Diesel, and Jet Fuel: Process Synthesis and Global Optimization

Richard C-Baliban, Josephine A-Elia, Christodoulos A-Floudas, Xin Xiao, Zhijian Zhang, Jie Li, Hongbin Cao, Jiong Ma, Yong Qiao and Xuteng Hu.

Duckweed biomass is gasified in a thermochemical-based superstructure to produce gasoline, diesel, and kerosene using a synthesis gas intermediate. The superstructure includes multiple pathways for conversion of the synthesis gas to liquid hydrocarbons via Fischer–Tropsch synthesis or intermediate methanol synthesis. Low-temperature and high-temperature Fischer–Tropsch processes are examined using both iron and cobalt based catalysts. Methanol may be converted to hydrocarbons via the methanol-to-gasoline or methanol-to-olefins processes. The hydrocarbons will be refined into the final liquid products using ZSM-5 catalytic conversion, oligomerization, alkylation, isomerization, hydrotreating, reforming, and hydrocracking. A process synthesis framework is outlined to select the refining pathway that will produce the liquid fuels as the lowest possible cost. A rigorous deterministic branch-and-bound global optimization strategy will be incorporated to theoretically guarantee that the overall cost of the solution chosen by the synthesis framework is within a small fraction of the best possible value. A heat, power, and water integration is incorporated within the process synthesis framework to ensure that the cost of utility production and wastewater treatment are simultaneously included with the synthesis of the core refining processes. The proposed process synthesis framework is demonstrated using four case studies which determine the effect of refinery capacity and liquid fuel composition on the overall system cost, the refinery topological design, the process material/energy balances, and the lifecycle greenhouse gas emissions.

温馨提示:87%用户都在生物谷APP上阅读,扫描立刻下载! 天天精彩!


相关标签

最新会议 培训班 期刊库